
Aerospace · Automotive · Linux Features

Medical Devices · OS Engineering Process

Safety Architecture · Systems · Tools

Safety Architecture
Working Group
update
Gabriele Paoloni, Red Hat

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

Topics
− Working group goal & introduction
− Milestones & achievements in 2023
− Challenges and fails
− Plans for 2024

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

Working group goal
& introduction

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

Working group goal

“Determine critical Linux subsystems and components in supporting safety
functions, define associated safety requirements & architectural assumptions to

deliver analyses for safety critical system integration.”

Activities:
● Definition and analysis of Kernel requirements derived from domain WGs (currently the

telltale use case)
● Safety analyses inside the Kernel
● Tools and techniques to support an architectural description of the Kernel

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

The Safety Arch WG within the ELISA WGs
− Medical, Automotive, Aerospace: domain

WGs analize use cases that define safety
requirements for the Kernel

− OSEP WG: investigates and proposes the best
methodology to perform safety analyses and
other safety related activities inside the Kernel

− Tools WG: maintains and improves Tools used
for the Safety Arch WG and other WGs
activities

− Linux Features: delves into technical topics
that are relevant for the Safety Arch WG and
other WGs activities

Linux (e.g from CIP or AGL)
Other
(RT)OSOther

(RT)OS

HW-Virtualization

µPµC

Container more
container

Tooling (e.g. Yocto)

Open Source Engineering
Process (OSEP

Tool Investigation &
Code Improvement

ArchitectureDomain WGs
(use cases)

Linux
Features

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

Milestones &
achievements

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

Milestones & achievements
- ks-nav: a tool to provide a static view of the interactions between Kernel

components
- STPA(-like) inside the Kernel: investigating the applicability of the STPA

methodology to analyse the Kernel against allocated safety constraints, its
limitations and proposing improvements accordingly

- Kernel Safety Claims by Runtime Verification Monitors: investigating the value,
the methodology and limitations in using RV Monitors to qualify the Kernel
against some safety claims

https://github.com/elisa-tech/ks-nav
https://docs.google.com/document/d/1K_cQSS2KYDnJQ0B91Zvlxq9-35Cx8ntbXwVMQJ51rvY/edit#heading=h.pxjss22krbh6
https://github.com/elisa-tech/Safety_Architecture_WG/blob/RV-Monitors/RV-Monitor/Kernel_Safety_Claims_by_Runtime_Verification_Monitors.md

ks-nav Capabilities - Subsystems view

● Visualize subsystem relationships:
○ Illustrate interactions between

subsystems in the kernel.
● Understand system structure:

○ Gain insights about relevant
subsystems and drivers supporting a
specific functionality.

● Impact analysis and change management:
○ Assess changes' effects on

subsystems and manage them
effectively.

● Safety analysis and fault localization:
○ Identify critical subsystems and

support hazard analysis.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

ks-nav capabilities - Functions view
Zoom into a single subsystem for…

● Code comprehension and analysis:
○ Visualize the call tree for a specific

function.
○ Aid in understanding control flow,

debugging, and optimization.
● Safety analysis support:

○ Visualize the impact of compilation settings
○ Exclude code paths that are not relevant

● Impact analysis and change management:
○ Assess the potential impact of code

changes and understand propagation
effects.

STPA(-like): challenges to apply it to the Kernel
● The Kernel does not come with a “control

hierarchy structure”, that is needed to
perform STPA. Actually it does not come
with SW Architectural Design at all.

● The Kernel is a complex SW component
supporting thousands of functionalities over
hundred of external interfaces and
thousands of internal interfaces. Would the
top down hierarchy defined in the STPA
work?

● STPA phases are defined in a waterfall
fashion and not hierarchically. So all control
actions must be defined before defining
unsafe control actions (STPA phase 3).

STPA (-like): Kernel Control Hierarchy Structure

The ks-nav tool parses the
MAINTAINERS files and the
compiled binary Image of the
Kernel to determine direct and
indirect function calls between
subsystems and drivers.

Each interface between
subsystems is analysed for
possible “control actions”

Control actions here do not follow a
waterfall model but a graph model
instead

https://github.com/elisa-tech/Safety_Architecture_WG/tree/main/ks-nav

STPA (like): Kernel control actions

STPA phases are defined in a waterfall
fashion and not hierarchically. So all
control actions must be defined before
defining unsafe control actions (STPA
phase 3).

In order to optimize the analysis we
completed all STPA phases for each driver
or subsystem encountered. So for example
in the ioctl() scenario we started from the
VFS subsystem (the first one “touched” by
the input syscall).

This makes the diagram readable and
avoid expanding control actions that have
no associated losses/hazards

RV Monitors in the Kernel: use case analysis

We considered a use case where
the Kernel is used to reliably
program an external safety
watchdog with a safety timeout and
regularly pet such a watchdog

RV Monitors in the Kernel: monitor design

We modelled an RV Monitor to
check at runtime the Kernel to
behave according to the model

RV Monitors in the Kernel: FFI analysis

Problem: the RVM lives in the Kernel
Address Space. How to protect the
RVM from the Kernel itself?

We considered temporal, spatial and
communication interferences failure
modes and how the RV Monitor
addresses them

ASILB HW

 Linux

ASILB App

VFS (QM(B))

Watchdog (QM(B))

Exception
Handler

(ASILB(B))
Other Subsystems - QM

WTD Monitor
(ASILB(B))instrumentation

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

Challenges & fails

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

Challenges & fails

− STPA: we needed to heavily revisit the STPA methodology to accommodate
the Kernel analysis. The WG decided to move away from the STPA in favour
of a more flexible hierarchical FMEA

− Lack of Architecture and design documentation for Kernel internals: safety
analyses are expensive and time consuming since the Kernel lacks an
extensive architecture and design documentation of the code

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

Plan for 2024

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Systems · Tools

Plan for 2024

− Develop a methodology to effectively analyse the Kernel (also leveraging
expert judgement)

− Apply such methodology to one or more use cases
− Develop an RV Monitor to qualify the Kernel for one or more use cases

(analysed above)

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

Thank you

Aerospace · Automotive · Linux Features · Medical Devices

OS Engineering Process · Safety Architecture · Systems · Tools

JOIN THE COMMUNITY
ELISA members are defining and maintaining a common set of
elements, processes and tools that can be incorporated into specific
Linux-based, safety-critical systems amenable to safety certification.
ELISA is also working with certification authorities and standardization
bodies in multiple industries to establish how Linux can be used as a
component in safety-critical systems.
Join us to expand the use of Linux across new industries including
healthcare, energy, transportation, and manufacturing. Learn more today
to participate and support ELISA.

Join
mailing lists

Participate
in meetings

Contribute to
documentations

Get involved
in WGs

Collaborate at
Workshops

21

https://lists.elisa.tech/g/main/subgroups
https://lists.elisa.tech/g/main/subgroups
https://lists.elisa.tech/calendar
https://lists.elisa.tech/calendar
https://github.com/elisa-tech
https://github.com/elisa-tech
https://elisa.tech/community/working-groups/
https://elisa.tech/community/working-groups/
https://elisa.tech/workshop-series/
https://elisa.tech/workshop-series/

