
Safety Architecture Working 
Group - Annual Update

Aerospace · Automotive · Linux Features

Medical Devices · OS Engineering Process

Safety Architecture · Space Grade Linux · Systems · Tools

Gabriele Paoloni & the WG 
participants



Agenda
● Working Group Intro
● Major milestone and achievements in 2024
● Current focus and activities
● What’s coming up in 2025 and areas and opportunities for collaboration
● Onboarding resources and how to get involved

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



The Safety Architecture Working Group
Mission:
According to technical safety requirements produced by domain specific WGs the 
focus of the Safety Architecture WG is to determine critical Linux subsystems and 
components in supporting safety functions, define associated safety requirements 
and scalable architectural assumptions, deliver corresponding safety analyses for 
their individual qualification and their integration into the safety critical system.



Past year activities
1) Kernel Safety Claims by Runtime Verification Monitors
2) Revisited STPA vs Expert Driven FMEA comparison
3) Evaluating and improving the Linux Kernel documentation
4) Linux Kernel Requirements



Kernel Safety Claims by Runtime Verification 
Monitors

We analysed the challenges in 
monitoring the Kernel through a 
monitor that also run within the 
Kernel. Mainly:
a) Understanding the Kernel 

code to be monitored (to 
design an effective monitor)

b) Claiming Freedom From 
Interference between the 
monitor and the rest of the 
Kernel

ASILB HW

 Linux

ASILB App

VFS (QM(B))

Watchdog (QM(B))
WTD Monitor (ASILB(B))

Exception 
Handler 

(ASILB(B))
Other Subsystems - QM

ftrace

https://github.com/elisa-tech/Safety_Architecture_WG/blob/afd9ac1b6fb10dd09afc73d4cc4037e82408934e/RV-Monitor/Kernel_Safety_Claims_by_Runtime_Verification_Monitors.md
https://github.com/elisa-tech/Safety_Architecture_WG/blob/afd9ac1b6fb10dd09afc73d4cc4037e82408934e/RV-Monitor/Kernel_Safety_Claims_by_Runtime_Verification_Monitors.md


Revisited STPA vs Expert Driven FMEA comparison
STPA better suits a system level analysis; e.g. to define and break down safety 
requirements for a safety concept

Expert Driven FMEA better suits a SW level analysis; e.g. to define and break down 
safety requirements for SW Components.

In both cases in order to claim the completeness and correctness of the analyses 
it is crucial to have a comprehensive description of the element under analysis 
(The Linux Kernel in our case)

https://docs.google.com/document/d/1_CPzsvrcm-En1DOWjwaiPrKuiYOfqJJxqHq1xrsQgio/edit?tab=t.0#heading=h.9ugr1ohb2qy1


Evaluating and improving the Linux Kernel 
documentation
Main goals of the document: 
● Analyze the current templates and guidelines that are available in the Linux Kernel 

documentation, 
● Evaluate if and how they fulfill architecture and design aspects required by 

functional safety standards, 
● Define improvements also in consideration of maintenance challenges deriving 

from a continuously evolving code baseline

This document triggered a session presented at Linux Plumbers 2024, following such a 
discussion the audience realized that we need to formalize and define testable 
requirements in Linux

https://github.com/elisa-tech/Safety_Architecture_WG/blob/main/Kernel_Documentation/Evaluating_and_improving_the_Linux_Kernel_documentation.md
https://github.com/elisa-tech/Safety_Architecture_WG/blob/main/Kernel_Documentation/Evaluating_and_improving_the_Linux_Kernel_documentation.md
https://docs.kernel.org/
https://docs.kernel.org/
https://lpc.events/event/18/contributions/1894/


Linux Kernel Requirements
During the last ELISA 
Workshop at NASA a 
requirements template 
proposal has been presented 
and we decided, as next step, 
to prototype some examples 
and the automation 
associated with their 
generation and maintenance

Tag Name Cardinality Argument Mutability Locations

SPDX-Req-ID (1,1) Immutable Inline, Sidecar

SPDX-Req-End (1,1) N/A Inline

SPDX-Req-Ref (0,*) Immutable Inline

SPDX-Req-HKe
y

(1,1) Mutable Sidecar

SPDX-Req-Chi
ld

(0,*) Mutable Sidecar

SPDX-Req-Sys (1,1) Mutable Sidecar

SPDX-Req-Tex
t

(1,1) Mutable Sidecar

SPDX-Req-Not
e

(0,1) Mutable Sidecar

https://docs.google.com/document/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs/edit?tab=t.0#heading=h.p3fgqjsv0a38


Current Focus
● Prototyping Linux Kernel Requirements
● Prototyping the automation to check patchsets against requirements and 

vice-versa
● Finalizing the initial requirements framework, automation and examples
● Finalizing the Linux Kernel Requirements white paper and get it published by 

the Linux Foundation



Prototyping Linux Kernel Requirements
We started prototyping requirements for some functions of 
the tracing subsystem.
Requirements shall be:

● Testable
● Maintainable inline within the source code
● Compatible with pre-existing Kernel Documentation
● Hierarchically traceable

The main challenge is identifying the main design elements 
to be documented starting from the pre-existing code

While it is important to refer to design elements in the 
requirements (in order to write testable requirements), on the 
other hand it is not possible/feasible to mention them all 
(otherwise requirements would be as complex as the code 
itself)

https://github.com/elisa-tech/linux/commit/61db7177f36b8d0042a283c4240df33395ce7cf0


Prototyping the automation to check patchsets 
against requirements

A script to automate the generation of Requirements’ IDs (SPDX-Req-ID) is 
in-progress.

The goal is to generate a unique one that cannot change along the life of the 
requirements

“SPDX-Req-HKey” will instead be used to flag if, following code changes or 
requirement’s text changes, the requirement shall be reviewed against the code 
(and vice versa).
“SPDX-Req-HKey” hashes are produced based on the following criteria:

● PROJECT: The name of the project (e.g. linux)
● FILE_PATH: The file the code resides in, relative to the root of the 

project 
repository.

● INSTANCE: The requirement template instance, minus tags with 
hash 

strings.
● CODE: The code that the SPDX-Req applies to.

“SPDX-Req-ID” is the very first “SPDX-Req-HKey” generated

https://github.com/elisa-tech/linux/pull/1
https://github.com/elisa-tech/linux/pull/1


Finalizing the initial requirements framework, 
automation and examples
The working group is collaborating on a development branch:
https://github.com/elisa-tech/linux/tree/linux_requirements_wip

The very next steps are:
● Complete the requirements definition for 

trace_array_set_clr_event() and trace_set_clr_event()

● Complete the automation for maintaining all the SPDX requirements’ fields

https://github.com/elisa-tech/linux/tree/linux_requirements_wip


Finalizing the Linux Kernel Requirements white 
paper and get it published by the Linux Foundation

The working group is collaborating on a 
work in progress draft here.

Following the finalization of the initial 
requirements’ framework and examples, 
the draft will be refined and a 
whitepaper should be published to 
engage with the community of Linux 
developers 

[...]

https://docs.google.com/document/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs


What’s coming up in 2025
● Upstreaming initial requirements framework, automation and examples
● Re-focusing requirements in alignment with the key subsystems identified by 

the LFSCS working groups (or subsystems that are key to domain specific 
working groups)

● Using Linux Kernel requirements to support safety analyses in the Kernel



Onboarding resources and how to get involved
WG Webpage: https://lists.elisa.tech/g/safety-architecture

WG Regular Public Meeting
All ELISA public meetings can be accessed here https://zoom-lfx.platform.linuxfoundation.org/meetings/elisa
You can register for a specific WG meeting to receive the direct meeting calendar invitation.
You can also subscribe to calendar feed here https://lists.elisa.tech/g/safety-architecture/calendar
 

GitHub Repo
Please go to https://github.com/elisa-tech/Safety_Architecture_WG for additional details including current work led by this 
group and how to collaborate.

https://lists.elisa.tech/g/safety-architecture
https://zoom-lfx.platform.linuxfoundation.org/meetings/elisa
https://lists.elisa.tech/g/safety-architecture/calendar
https://github.com/elisa-tech/Safety_Architecture_WG


Thank You!


