Safety Architecture Working
Group - Annual Update

Gabriele Paoloni & the WG
participants

ELISA

Enabling Linux in
Safety Applications

Aerospace - Automotive - Linux Features
Medical Devices - OS Engineering Process

Safety Architecture - Space Grade Linux - Systems - Tools

Agenda

Working Group Intro

Major milestone and achievements in 2024

Current focus and activities

What's coming up in 2025 and areas and opportunities for collaboration
Onboarding resources and how to get involved

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications

The Safety Architecture Working Group

Mission:

According to technical safety requirements produced by domain specific WGs the
focus of the Safety Architecture WG is to determine critical Linux subsystems and
components in supporting safety functions, define associated safety requirements
and scalable architectural assumptions, deliver corresponding safety analyses for
their individual qualification and their integration into the safety critical system.

Past year activities

—

Kernel Safety Claims by Runtime Verification Monitors
Revisited STPA vs Expert Driven FMEA comparison
Evaluating and improving the Linux Kernel documentation
Linux Kernel Requirements

W N
N N N N

Kernel Safety Claims by Runtime Verification

Monitors

A

A

[/ VFS (QM(B))]

[Watchdog (QM(B)) "=

\Linux

A

|

=~
Other Subsystems - QM

We analysed the challenges in
monitoring the Kernel through a
monitor that also run within the
Kernel. Mainly:

a) Understanding the Kernel
code to be monitored (to
design an effective monitor)

b) Claiming Freedom From
Interference between the
monitor and the rest of the
Kernel

https://github.com/elisa-tech/Safety_Architecture_WG/blob/afd9ac1b6fb10dd09afc73d4cc4037e82408934e/RV-Monitor/Kernel_Safety_Claims_by_Runtime_Verification_Monitors.md
https://github.com/elisa-tech/Safety_Architecture_WG/blob/afd9ac1b6fb10dd09afc73d4cc4037e82408934e/RV-Monitor/Kernel_Safety_Claims_by_Runtime_Verification_Monitors.md

Revisited STPA vs Expert Driven FMEA comparison

STPA better suits a system level analysis; e.g. to define and break down safety
requirements for a safety concept

Expert Driven FMEA better suits a SW level analysis; e.g. to define and break down
safety requirements for SW Components.

In both cases in order to claim the completeness and correctness of the analyses
it is crucial to have a comprehensive description of the element under analysis
(The Linux Kernel in our case)

https://docs.google.com/document/d/1_CPzsvrcm-En1DOWjwaiPrKuiYOfqJJxqHq1xrsQgio/edit?tab=t.0#heading=h.9ugr1ohb2qy1

Evaluating and improving the Linux Kernel
documentation

Main goals of the document:
e Analyze the current templates and guidelines that are available in the Linux Kernel
documentation,
e Evaluate if and how they fulfill architecture and design aspects required by
functional safety standards,
e Define improvements also in consideration of maintenance challenges deriving
from a continuously evolving code baseline

This document triggered a session presented at Linux Plumbers 2024, following such a
discussion the audience realized that we need to formalize and define testable

requirements in Linux

https://github.com/elisa-tech/Safety_Architecture_WG/blob/main/Kernel_Documentation/Evaluating_and_improving_the_Linux_Kernel_documentation.md
https://github.com/elisa-tech/Safety_Architecture_WG/blob/main/Kernel_Documentation/Evaluating_and_improving_the_Linux_Kernel_documentation.md
https://docs.kernel.org/
https://docs.kernel.org/
https://lpc.events/event/18/contributions/1894/

Linux Kernel Requirements

Tag Name Cardinality | Argument Mutability Locations During the Iast ELISA
SPDX-Req-ID (1,1) Immutable Inline, Sidecar WorkShOp at NASA 3
SPDX-Reqg-End (1,1) N/A Inline .

requirements template
SPDX-Reqg-Ref (0, *) Immutable Inline

proposal has been presented
SPDX-Reqg-HKe (1,1) Mutable Sidecar .
y and we decided, as next step,
SPDX-Req-Chi (0,%) |Mutable Sidecar to prototype some examples
1d .

and the automation
SPDX-Reqg-Sys (1,1) Mutable Sidecar . . .

associated with their
SPDX-Reqg-Tex (1,1) Mutable Sidecar . .
t generatlon and maintenance
SPDX-Reg-Not (0,1) Mutable Sidecar
e

ELISA

Enabling Linux in
ety Applications

https://docs.google.com/document/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs/edit?tab=t.0#heading=h.p3fgqjsv0a38

Current Focus

e Prototyping Linux Kernel Requirements
e Prototyping the automation to check patchsets against requirements and

vice-versa
e Finalizing the initial requirements framework, automation and examples

e Finalizing the Linux Kernel Requirements white paper and get it published by
the Linux Foundation

Prototyping Linux Kernel Requirements

+ 1498

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520

/%%

SPDX-Req-ID: [TODO automatically generate it]

SPDX-Req-Text:

trace_set_clr_event - enable or disable an event within a system
@system: system name (NULL for any system)

@event: event name (NULL for all events, within system)

@set: 1 to enable, @ to disable (any other value is invalid)

This is a way for other parts of the kernel to enable or disable
event recording.

sequence of events:

1) retrieve the global tracer

2) locks the global event_mutex

3) invokes _ ftrace_set_clr_event_nolock
4) unlocks the global event_mutex

Returns @ on success, —-ENODEV if the global tracer cannot be retrieved,
-EINVAL if the parameters do not match any registered events, any other
error condition returned by _ ftrace_set_clr_event_nolock

¥ O K K X K X K X X X X X X X X ¥ X ¥

*/
int trace_set_clr_event(const char xsystem, const char xevent, int set)

{

ELISA

Enabling in

Applications

We started prototyping requirements for some functions of
the tracing subsystem.
Requirements shall be:

e Testable

e Maintainable inline within the source code

e Compatible with pre-existing Kernel Documentation
e Hierarchically traceable

The main challenge is identifying the main design elements
to be documented starting from the pre-existing code

While it is important to refer to design elements in the
requirements (in order to write testable requirements), on the
other hand it is not possible/feasible to mention them all
(otherwise requirements would be as complex as the code
itself)

https://github.com/elisa-tech/linux/commit/61db7177f36b8d0042a283c4240df33395ce7cf0

Prototyping the automation to check patchsets

against requirements

~ scriptsfregs/idgen.py: Add script for SPDX-Req-ID management"

This script scans and processes all .c and .h files within a directory

tree.

It performs two main tasks:

* Preprocessing: Detects existing SPDX-Req-ID entries, updating a
global map to track the highest progressive ID per file hash.

* ID Assignment: Updates or assigns new SPDX-Req-ID identifiers where
missing, based on the file's hash and the next available progressive
ID.

The script ensures efficient directory traversal by maintaining a single
file system scan and processes files in place, emitting warnings for

invalid or mismatched IDs.

Signed-off-by: Alessandro Carminati <acarmina@redhat.com>

e alessandrocarminati committed 5 days ago

ELISA

Enabling in
Applications

A script to automate the generation of Requirements’ IDs (SPDX-Reqg-1ID) is
in-progress.

The goal is to generate a unique one that cannot change along the life of the
requirements

“SPDX-Reg-HKey" will instead be used to flag if, following code changes or
requirement’s text changes, the requirement shall be reviewed against the code
(and vice versa).

“SPDX-Reqg-HKey" hashes are produced based on the following criteria:

° PROJECT: The name of the project (e.g. linux)
° FILE_PATH: The file the code resides in, relative to the root of the
project
repository.
° INSTANCE: The requirement template instance, minus tags with
hash
strings.
° CODE: The code that the SPDX-Req applies to.

“SPDX-Req-ID" is the very first “SPDX-Req-HKey" generated

https://github.com/elisa-tech/linux/pull/1
https://github.com/elisa-tech/linux/pull/1

Finalizing the initial requirements framework,
automation and examples

The working group is collaborating on a development branch:
https://github.com/elisa-tech/linux/tree/linux_requirements_wip

The very next steps are:
e Complete the requirements definition for
trace array set clr event() and trace set clr event()

e Complete the automation for maintaining all the SPDX requirements’ fields

https://github.com/elisa-tech/linux/tree/linux_requirements_wip

Finalizing the Linux Kernel Requirements white
paper and get it published by the Linux Foundation

SPDX Requirements Template . . .
q P The working group is collaborating on a

work in progress draft here.

Introduction

As part of a broader effort to document the architecture and design of the Linux Kernel, we
propose a method to formally describe developer intent at the function and subfunction level in
the form of testable expectations (i.e. requirements). This will provide a fact based foundation
for pass/fail test development, test validation via code coverage tools, support optional

traceability to higher level design, and enable tool development for process management. FOI IOW' n g th e ﬁ n aI |Zat | O n Of th e | n It | a I
Background Information requirements’ framework and examples,

During the 2024 Linux Plumbers conference, a discussion [1] on Linux Kernel design spun out H
of the Safe Systems mini-conference [2]. This culminated in a general agreement that low level th e d raft WI I I be reﬂ n ed a n d a

developer intent (requirements) needed to be maintained in-line with code, and that a machine . .
readable template was required to ensure consistency and support automation. W h |'te p a p e r S h O u I d b e p u b I | S h ed 'to

If one thinks of code as the “what”, the “why” is a reflection of developer intent, usually in service H H H

to an agreed upon design or architecture. The “why” typically begins as human inspiration and en g a g e W It h th e CO m m u n Ity Of LI n u X
eventually finds its way into commit messages, mailing lists, conference proceedings, papers,

and a long tail of mediums far too numerous to mention. d eve I () p ers

[..]

ELISA

Enabling in
y Applications

https://docs.google.com/document/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs

What's coming up in 2025

e Upstreaming initial requirements framework, automation and examples
e Re-focusing requirements in alignment with the key subsystems identified by
the LFSCS working groups (or subsystems that are key to domain specific

working groups)
e Using Linux Kernel requirements to support safety analyses in the Kernel

Onboarding resources and how to get involved

WG Webpage: https:/lists.elisa.tech/g/safety-architecture

WG Regular Public Meeting

All ELISA public meetings can be accessed here https://zoom-Ifx.platform.linuxfoundation.org/meetings/elisa
You can register for a specific WG meeting to receive the direct meeting calendar invitation.

You can also subscribe to calendar feed here https://lists.elisa.tech/g/safety-architecture/calendar

GitHub Repo
Please go to https://github.com/elisa-tech/Safety_Architecture_WG for additional details including current work led by this
group and how to collaborate.

ELISA

Enabling in
Applications

https://lists.elisa.tech/g/safety-architecture
https://zoom-lfx.platform.linuxfoundation.org/meetings/elisa
https://lists.elisa.tech/g/safety-architecture/calendar
https://github.com/elisa-tech/Safety_Architecture_WG

ELISA

Enabling Linu
Safety Appllcatlons

Thank You!

