
Linux Features for Safety-Critical 
Systems WG - Annual Update

Aerospace · Automotive · Linux Features

Medical Devices · OS Engineering Process

Safety Architecture · Space Grade Linux · Systems · Tools

Alessandro Carminati
Red Hat



The Host
● Hostname: Alessandro Carminati
● Linux Kernel Developer @ Red Hat (automotive distribution)
● Contributing at Architecture, Tools and Linux Features 

WGs.
● Focus on the Linux Kernel safety, core of the GNU Linux 

safety.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Working Group Statement [-]
● Kernel Feature Investigation: Explore and evaluate Linux kernel features for 

safety-critical systems.

● Building a Collaborative Community: Connect kernel developers and safety 
system producers to share insights.

● Deepen Practical Knowledge: Understand feature limitations, real-world 
performance, and areas for improvement.

● Supporting Kernel Evolution: Propose best practices and eventual kernel 
patches for better safety integration.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 

https://github.com/elisa-tech/wg-lfscs/blob/main/mission.md


Achievements of 2024 (Overview)
● Restart & Realignment: Defined priorities and set a clear agenda 

after a significant restart phase.

● Minimal Kernel Configuration: Explored alternatives and 
selected the target platform for configuration work.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 

● Collaboration with Other WGs: Productive discussions, particularly with the 
architecture working group.

● Linux Minimal Features (WIP): Defined the problem, developed a methodology, 
and conducted initial investigations.



Minimal Kernel Configuration
● Why Minimal Matters for Safety: Reducing enabled features lowers 

complexity and the risk of failures.

● Safety Requirements Across Industries: Diverse needs (automotive, 
aerospace, healthcare) call for a common baseline with essential features.

● Defining a Minimal Configuration: Establishing a streamlined kernel that 
supports critical features without adding unnecessary complexity.

● Role of Kernel Configuration: Limiting enabled drivers and features improves 
safety by reducing potential failure points.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Minimal Kernel Configuration
● Architecture is Key: Kernel configuration depends on knowing the target 

architecture.

● Exploring Alternatives: Evaluated architectures (x86, ARM, RISC-V) and 
system types (physical vs. emulated).

● Target Decision: Selected aarch64 QEMU for its controlled testing 
environment and community accessibility.

● Strategic Value: QEMU (using virtio) has silicon implementation proposals, 
offering real-world hardware impact.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Linux Minimal Features Investigation - Intro
● Architecture WG Initiative: Investigation prompted by a key question from the 

Architecture WG.

● Defining Core Requirements: Identifying the essential kernel features to run 
even a basic program.

● Guiding Kernel Configuration: Helps strip down the kernel to improve 
simplicity and predictability.

● Cross-Industry Relevance: Provides a common feature set for safety-critical 
applications across various sectors.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Linux Minimal Features Investigation - Methodology
● Exploring Approaches: Manual code review, QEMU debugging, and dynamic 

tracing methods considered.

● Challenges: Manual investigation impractical; QEMU debugging: required 
extensive coding work.

● Chosen Method: Dynamic tracing using ftrace for minimal kernel interactions.

● Why ftrace: Lightweight, works out of the box but adds kernel complexity.

● Custom Tooling: Launcher program minimizes OS interference during tracing.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Linux Minimal Features Investigation - Results
● Essential Kernel Mechanisms: Identified key components required for 

minimal application.

● Methodology Development: Established a systematic approach for feature 
investigation.

● Randomization vs. Predictability: Balancing security-driven randomization 
with safety-critical system requirements.

● Next Steps: Further minimal config and feature probing needed; feature list to 
be published soon.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Next Steps
● Deep Dive into Features: Analyze existing features for 

complexity and optimization.
● Collaboration Opportunities: Leverage insights from tools 

and architecture working groups.
● Original Agenda Completion: Continue investigations on 

fundamental operations.
● Open Invitation: I WANT YOU

○ Meetings: bi-weekly Tue 13.00 CE(S)T 
https://elisa.tech/community/meetings/ 

○ Mailing list: https://lists.elisa.tech/g/linux-features
○ Linux Features git: https://github.com/elisa-tech/wg-lfscs

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 

https://elisa.tech/community/meetings/
https://lists.elisa.tech/g/linux-features
https://github.com/elisa-tech/wg-lfscs


Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Thanks


