
ELISA Workshop
Munich, Germany

November 18-20, 2025
Co-hosted with Red Hat

License: CC-BY-4.0

Member of Technical
Steering Committee

ELISA
(Linux Foundation)

Luigi Pellecchia

Agenda
● BASIL Overview
● What’s new

Who I am
Principal

Software Quality
Engineer

In-vehicle OS
Red Hat

License: CC-BY-4.0

BASIL The FuSa Spice
Tool developed to manage software
related work items, design their
traceability towards specifications and
ensure completeness of analysis

● Born at Red Hat to support RHIVOS
Functional Safety ISO 26262
Compliance Certification

● BASIL name comes from ASIL B
● Presented to ELISA Project on June

2023 during the Berlin Workshop
● Open Sourced and hosted at ELISA

github

License: CC-BY-4.0

https://elisa.tech/event/elisa-workshop-berlin/
https://github.com/elisa-tech/BASIL
https://github.com/elisa-tech/BASIL

Define the traceability matrix by
creating the work items

snippet

snippet

snippet

snippet

Library X

Library Y

Library Z

Sw Component A v1.0

Sw Component B vX.Y

Sw Component C vJ.Z

Sw Component A v1.1

BASIL The FuSa Spice

License: CC-BY-4.0

BASIL - Strengths

● Open Source
● Web user interface and HTTP REST API
● Extended traceability and SPDX SBOM generation
● Keeps history of all changes
● Granular user permissions management
● Clarifies gaps and promotes collaboration
● In-app and email notifications
● Embedded test infrastructure and support for external test infrastructures
● Import Software Requirements (SPDX Model 3 json, yaml, json, csv, xlsx)
● Import Test Cases from remote test repositories (via tmt)

License: CC-BY-4.0

License: CC-BY-4.0

BASIL supported test Infrastructures

Test
Infrastructure

Trigger and Trace Trace pre existing
runs

Type Available starting
from version

tmt Embedded >= 1.4

Gitlab CI External >= 1.5

GitHub Actions External >= 1.5

KernelCI External >= 1.5

Testing Farm External >= 1.5

LAVA (Linaro) External >= 1.7

What’s new?

Apache deployment

License: CC-BY-4.0

SPDX Export Refactoring

License: CC-BY-4.0

● SPDX export implemented at
version 1.6.x was generating
files that are not complaints
with the spdx 3.0.1 schema

● The first approach was based
on spdx3 python module

● A complete refactor of the
feature was needed to
complies with the spdx 3.0.1
schema

● A CI test has been created to
ensure BASIL exported files
pass the schema validation

SPDX Export - CI Validation against spdx 3.0.1 schema

License: CC-BY-4.0

SPDX Export - Graph generation

License: CC-BY-4.0

Configurable Alert Messages

License: CC-BY-4.0

Configurable Alert Messages

License: CC-BY-4.0

New Release available check

License: CC-BY-4.0

Create an account and start experimenting with it

Demo on ELISA instance

http://elisa-builder-00.iol.unh.edu:9056
License: CC-BY-4.0

http://elisa-builder-00.iol.unh.edu:9056

AI Support
● Admins can configure an external AI tool and communicate with it via openAI
● UI will enable components in case of successful connection with the AI endpoint

Can be used to:
● Design work item from BASIL tool

○ Default prompts are asking to generate YAML like format that can be parsed and used to
populate the UI in case of success

● Implement a Test Case based on Test Specification
○ Default prompts are asking to generate a file that will be store in the user files section

License: CC-BY-4.0

AI Support

UI check AI
availability

Display UI
elements

for AI

User asks
for a

suggestion

Backend API AI Api Backend API
Response parser

Populate
UI form
with AI

suggestion

Yes

Backend API AI Api
openAI Api

openAI Api

Link to presentation at Open Source Summit Europe 2025
https://www.youtube.com/watch?v=17ftITXJjGI&t=2s&pp=ygUkYmFzaWwgd2hhdCdzIG9wZW4gc291cmNlIHN1bW1pdCAyMDI1

License: CC-BY-4.0

https://www.youtube.com/watch?v=17ftITXJjGI&t=2s&pp=ygUkYmFzaWwgd2hhdCdzIG9wZW4gc291cmNlIHN1bW1pdCAyMDI1

Hierarchical Documents Mapping

License: CC-BY-4.0

Traceability as Code
● Work items handled in git repositories
● Scan multiple external git repositories to extract data
● Shareable configuration file generates same results
● Automatically takes into account new work items
● Recreate the traceability of a target git commit
● Not tied to a single work item format
● Can be used in CI as the feature is provided by a command line tool
● Easy to extend with custom rules
● Can be used in CI automating the generation of an SBOM

License: CC-BY-4.0

Traceability as Code - Workflow

● Software components definition
● Repository configuration and candidate files extraction
● Reference document sections extraction
● Candidate work items data extraction per field
● Candidate work items data filtering
● Candidate work items data refactoring
● Traceability generation

License: CC-BY-4.0

Traceability as Code - Repository files filtering

repository: &repository_config
 url: "https://github.com/elisa-tech/BASIL.git"
 branch: "main"
 filename_pattern: "*.c"
 folder_pattern: "*examples*"
 hidden: False
 file_contains: ["read_mem"]
 file_not_contains: []

Define rules to identify the files containing
the work items data

● Is targeting a git commit/branch
● Reusable via YAML anchor
● Filter over

○ Files
○ Folders
○ File content

License: CC-BY-4.0

Define how each field should be
populated identifying start and end
rules that will be applied over the
candidate files.

The match condition can generate
list of sections.

Supports relational search with
closest match in a target direction

Allows split of a section based on a
delimiter to generate multiple
matches

Traceability as Code - Work item field data extraction
 description:
 start:
 line_contains: " read_mem("
 closest:
 line_contains: "Function's expectations:"
 direction: "up"
 end:
 line_contains: "* Context"
 split:
 by: "\n*\n"

License: CC-BY-4.0

Traceability as Code - Work items candidates extraction
software_requirements:
 rules:
 - name: "sr1"
 repository: *repository_config
 skip_top_items: 1
 title:
 value: |
 "Function expectation __software_requirement_index__"
 description:
 start:
 line_contains: " read_mem("
 closest:
 line_contains: "Function's expectations:"
 direction: "up"
 end:
 line_contains: "* Context"
 split:
 by: "\n*\n"

Define rules to extract work items
data from identified candidate files:

Rules for each work item fields
- Magic variables
- Relational search
- Support constant values
- List generation from each

result

License: CC-BY-4.0

software_requirements:
 rules:
 - name: "sr1"
 repository: *repository_config
 skip_top_items: 1
 title:
 value: |
 "Function expectation __software_requirement_index__"
 filter:
 contains: ["keep", "1"]
 Case_sensitive: false

Traceability as Code - Work items candidates filtering

Define rules to filter over the
identified candidate work items:

- contains
- not contains
- regex

License: CC-BY-4.0

Traceability as Code - Work items candidates refactoring

Define rules to refactor and format
work items data:

- replace
- regex substitution
- uppercase
- lowercase
- left trim characters
- right trim characters
- global trim
- prefix
- suffix

software_requirements:
 rules:
 - name: "sr1"
 repository: *repository_config
 skip_top_items: 1
 title:
 value: |
 "Function expectation __software_requirement_index__"
 rstrip: “!?)]}.,;:”
 transform:
 - how: replace
 what: what_to_find
 with: replace_with
 - how: prefix
 value: “Requirement: ”

License: CC-BY-4.0

Check if the work items are already available in the BASIL database based on their content
and create new ones if not.

Traceability as Code - Work items generation

License: CC-BY-4.0

/**
* read_mem - read from physical memory (/dev/mem).
* @file: struct file associated with /dev/mem.
* @buf: user-space buffer to copy data to.
* @count: number of bytes to read.
* @ppos: pointer to the current file position, representing the physical
* address to read from.
*
* This function checks if the requested physical memory range is valid
* and accessible by the user, then it copies data to the input
* user-space buffer up to the requested number of bytes.
*
* Function's expectations:
*
* 1. This function shall check if the value pointed by ppos exceeds the
* maximum addressable physical address;
*
* 2. This function shall check if the physical address range to be read
* is valid (i.e. it falls within a memory block and if it can be mapped
* to the kernel address space);
*
…..
*/
 static ssize_t read_mem(struct file *file, char __user *buf,
 size_t count, loff_t *ppos)

Traceability as Code - Example
software_requirements:

 rules:
 - name: "linux kernel requirements"
 repository: *linux_repo_config
 skip_top_items: 1
 title:
 value: "Function expectation
__software_requirement_index__"
 description:
 start:
 line_contains: " __api__("
 closest:
 line_contains: "Function's expectations:"
 direction: "up"
 end:
 line_contains: "* Context"
 split:
 by: "\n*\n"
 transform:
 - how: "regex_sub"
 what: " +"
 with: " "
 - how: "suffix"
 value: "."
 rstrip: ",.;:!? "

License: CC-BY-4.0

Traceability as Code - UI

License: CC-BY-4.0

Demo

Licensing of Workshop Results
All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0)
[https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel
code contributions.

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

License: CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

