
LFSCS WG - Linux Virtual Address
Space Safety

Aerospace · Automotive · Linux Features

Medical Devices · OS Engineering Process

Safety Architecture · Space Grade Linux · Systems · Tools

Alessandro Carminati
Red Hat

Agenda
● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Introduction & Scope

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

Linux: A Control Center Built for Efficiency… Not for Safety

Linux VMA Safety
An Architectural Roadmap for Functional Safety

● Functional Safety Requires Deterministic Isolation. The VMA is the
key mechanism for isolation and resource management in a Linux
Mixed-Criticality environment.

● Current Architecture Compromises Isolation. The default Linux VMA
design prioritizes flexibility over the determinism required for safety.

● Defining the "Safe VMA" Architectural Roadmap. We must identify
and address:

○ Fundamental Assumptions and Risks in the VMA lifecycle.
○ Corner Cases in allocation and memory pressure handling.
○ Necessary changes to the "Software Around the VMA.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Introduction & Scope

The VMA's Critical Role
Isolation and Resource Management in Mixed-Criticality Systems

● Heuristic Overcommit: The Linux default, prioritizes flexibility.

● Never Overcommit: Safe systems prefer this policy, which restricts allocations to a
defined limit to avoid unexpected failures.

● An Architectural idea is "Allocation on Usage (AoU)": Safer processes pre-allocate all
necessary memory.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Introduction & Scope

Scope and Goal
Defining the "Software Around the VMA" and the Functional Safety Mandate

● Strict temporal and spatial isolation.

● Deterministic resource access.

● Preventing unintended access across process boundaries.

● Guaranteeing VMA integrity against races.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Introduction & Scope

VMA Architecture: Lifecycle & Features

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

Where Processes Get Their Memory… One Box at a Time.

● User VMAs: Private, per-process address spaces.

● Kernel VMA: Global, shared by all processes.

● Main kernel memory zones:

○ Linear Map: the direct 1:1 mapping of physical RAM,
○ vmalloc Area: non-contiguous mappings for dynamic kernel allocations,
○ Vmemmap: metadata mapping for struct page descriptors, and
○ Fixmap: reserved static mappings for special kernel addresses.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The VMA's Full Scope
Governing User Space AND Kernel Space

VMA Architecture: Lifecycle & Features

Processes VMA Lifecycle I
Initialization (fork, execve)

● fork(): Clone mm_struct & VMAs — shared pages via CoW.

● execve(): Tear down old VMAs (except shared); rebuild text, data,
heap, stack.

● Safety note: Shared memory can persist intentionally; defaults like
O_CLOEXEC limit accidental carryover.

● init process: First process built by kernel; later rebuilt via execve().

● Kernel VMA: Always inherited, shared by all processes.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

VMA Architecture: Lifecycle & Features

Processes VMA Lifecycle II
Dynamic Allocation & Runtime Mechanisms

● Syscalls: mmap(), munmap(), brk()/sbrk(), mprotect(), mremap()

● mlock()/mlockall(): Prevent swap-out, improve temporal determinism.

● Risks: Non-deterministic allocation, races, and layout shifts under load.

● Safety Practices:

○ Pre-allocate & lock critical pages.

○ Check all syscall results.

○ Understand mapping & overcommit behavior.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

VMA Architecture: Lifecycle & Features

VMA Instrumentation and Debugging Tools

● /proc/<pid>/maps, /proc/<pid>/smaps: show VMA layout and usage.

● KASAN: Shadow-memory detector for invalid access. Excellent for testing, but heavy,
partial, and nondeterministic.

● KFENCE: Lightweight guard-page monitor for production, but samples only a tiny
fraction of allocations.

● Hardware Tagging (ARM64): reduces overhead, future path for in-field safety
diagnostics.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

VMA Architecture: Lifecycle & Features

The Linear Mapping Threat

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

A Straight Tunnel Through Complexity… but at What Safety Cost?

Historical Context
The 32-bit Lowmem/Highmem Partitioning

● 4 GB total VA space: typically split 3 GB user / 1 GB kernel (CONFIG_VMSPLIT_*).

● Lowmem: Permanently mapped kernel region.

● Highmem: Unmapped RAM, accessed only via temporary mappings.

● Accidental Safety: Kernel couldn’t touch all RAM at once… Natural containment.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

The Linear Mapping Threat I
The Accidental Unification of Memory

● 64-bit kernels dropped Lowmem/Highmem juggling: one
continuous Linear Map.

● Every physical page gets a fixed virtual twin (fast & simple).

● Kernel can now address all memory: including user pages.

● Convenience removed the natural isolation barrier.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

The Linear Mapping Threat II
Adjacent Security Failure

● Kernel allocators (kmalloc, slab, per-CPU data) all use the Linear
Map.

● Kernel and user pages live in one physical continuum, no
hardware fence.

● A small overflow in kernel space can corrupt neighboring user
pages.

● The risk isn’t malice… it’s proximity.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

The Safety Conflict
Isolation Broken

● Unified View: Every physical page has a twin in the kernel’s
virtual map: no true boundary.

● The Implicit Trust: Safety depends entirely on the kernel
never making a memory error.

● Reality Check: One stray write in kernel space can corrupt
user data, no guardrail.

● Safety Gap: Functional safety demands provable
separation — the linear map removes it.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

Reconsidering Isolation
Highmem as a Conceptual Barrier

● Old Idea, New Role: 32-bit Highmem once split memory by necessity; today, it could
define safety boundaries by choice.

● Selective Reach: Mark safety-critical processes so their pages stay outside the kernel’s
linear map, reachable only via explicit mappings.

● Controlled Access: Legacy interfaces like /dev/mem must respect these no-go zones.

● Goal: Limit what the kernel can touch… not to weaken Linux, but to contain its reach.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

● Goal: Show that user-space memory can exist outside the kernel’s linear map.

● Mechanism: secretmemfd() allocates pages unmapped from the kernel view — even privileged
code cannot access them.

● Value: Demonstrates that physical-level isolation is technically possible in today’s Linux.

● Limitations:
○ copy_to_user() / copy_from_user() fail on these regions.
○ Only the owning process can safely access its data.
○ Designed for security, not safety… not transparent to existing software.

(Note: behavior depends on architecture; ARM64 may limit full page unmapping.)

Potential Software Mitigation:
Proof-of-Concept Isolation: secretmemfd()

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

The Linear Mapping Threat

Safety Features: Defense & Detection

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

A fortress under siege… brave defenders, but no peace of mind.

Defense Baseline I: Kernel Hardening
List Poisoning and Randomized Freelist Management

● List Poisoning: Checks list integrity and poisons freed pointers to catch early
use-after-free or double deletions.

○ Great for early bug detection, but offers no containment.

● SLAB Hardening: Shuffles SLAB allocations to stop predictable heap layouts.
○ Boosts security; adds non-determinism: not ideal for safety.

● KASAN: Uses shadow memory to detect invalid accesses and use-after-free.
○ Powerful diagnostic tool, too heavy for production safety use.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Safety Features: Defense & Detection

Defense Baseline II: Memory Control
OOM Killer and Overcommit Policies (A Safety Compromise?)

● OOM Killer: When memory runs out, it frees space by killing a process
based on heuristic scoring.

○ Keeps the system alive, not predictable.

● Overcommit Policies: (vm.overcommit_memory = 0/1/2) decide
how much virtual memory to promise.

○ Default favors efficiency over guaranteed success.

● Memory Pressure Handling (PSI, DAMON): Monitor stalls and reclaim
memory under stress.

○ Reactive, heuristic: help performance, not determinism.

● Safety Gap: These mechanisms ensure survival, not bounded
behavior.

○ Good for uptime, weak for safety.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Safety Features: Defense & Detection

● VMA Cache Integrity Risks: Concurrency and timing bugs can corrupt cached
VMA entries.

● Real-world Failures:
○ CVE-2018-17182: Sequence-number overflow led to stale VMA cache entries and crashes.

○ CVE-2016-5195 (Dirty COW): Race in copy-on-write logic broke page-protection rules.

● Safety Lesson:
○ These aren’t attacks: they’re accidents of timing.

○ They prove that fast-path optimizations can silently break memory isolation.

Detection: VMA Cache Integrity
Identifying and Preventing Fast-Path Corruption

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Safety Features: Defense & Detection

Defining the Path to Functional Safety

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

‘X’ Never Marks the Spot… Except When It Does.

The Architectural Gap
Why Existing Defenses are Insufficient Against Linear Mapping Threats

● Existing Defenses: Built to stop exploitation after a fault: they react to bad behavior.

● The Linear Map Threat: A design flaw, not an exploit: it makes faults inherently
possible.

● The Gap: Without spatial isolation or deterministic allocation, Functional Safety can’t be
guaranteed: even when no attacker is present.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Defining the Path to Functional Safety

Functional Safety Requirements for VMA
What “safe” memory management must guarantee

● Spatial and Temporal Isolation: Each VMA must stay within its bounds for its entire
lifetime: no neighbor overlap, no kernel overreach, no cross-process bleed.

● Deterministic Resource Access: Memory availability for safety-critical tasks must be
predictable. Enforced through Never Overcommit or Allocation-on-Usage (AoU) policies.

● Concurrency Integrity: VMAs must remain consistent under parallel activity: no
race-driven corruption like Dirty COW or stale cache reuse.

● Transparent Verification: The system must be able to prove these properties at runtime
or via traceability: safety cannot rely on trust alone.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Defining the Path to Functional Safety

Mitigation Avenues Under Review
Architectural Proposals

● Layered Isolation (Revisiting Highmem): Introduce deliberately unmapped regions to
re-establish hard separation between trusted and untrusted memory.

● Controlled Access Pools: Extend the secretmemfd() principle system-wide: defining
kernel-invisible “safe” VMAs by design, not by opt-in.

● Allocation on Usage (AoU): Commit memory only when first touched, adding temporal
determinism while reducing overcommit risk.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Defining the Path to Functional Safety

Next Step
Quantifying Risk & Feasibility: Setting the Stage for Design

● Understand Allocation Behavior: Examine SLUB’s per-CPU and global caches to see
how real allocation paths align, or conflict, with isolation goals.

● Validate Docs vs. Code: Check whether what’s written still matches what’s running.
Identify outdated assumptions and real-world divergences.

● Build the Roadmap: Combine all findings: VMA lifecycle, overcommit, linear map,
allocator behavior, into a structured plan for measurable risk reduction.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Defining the Path to Functional Safety

Epilogue

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

● Introduction & Scope

● VMA Architecture: Lifecycle & Features

● The Linear Mapping Threat

● Safety Features: Defense & Detection

● Defining the Path to Functional Safety

● Epilogue

No one finds safety alone — it’s always a team expedition. Sponsor M
essage

From Insight to Action
Key Takeaways & Roadmap

Technical Lessons

● The Linear Map trades safety for speed.
● Security tools help, but don’t ensure determinism.
● Safety needs true isolation and predictable allocation.

Next Steps for the Working Group
● Define the Safe VMA concept.
● Prototype isolation mechanisms.
● Align findings with ELISA Architecture SIG.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools

Epilogue

Thanks

