LFSCS WG - Linux Virtual Address
Space Safety

Alessandro Carminati
Red Hat

Aerospace - Automotive - Linux Features

ELISA

Enabling Linux in
Safety Applications

Medical Devices - OS Engineering Process

Safety Architecture - Space Grade Linux - Systems - Tools




Agenda

e Introduction & Scope

e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety
e Epilogue

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications



Introduction & Scope

e Introduction & Scope

e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety
e Epilogue

Linux: A Control Center Built for Efficiency... Not for Safety

ELISA

Enabling
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




Introduction & Scope

Linux VMA Safety

An Architectural Roadmap for Functional Safety

e Functional Safety Requires Deterministic Isolation. The VMA is the
key mechanism for isolation and resource management in a Linux
Mixed-Criticality environment.

e Current Architecture Compromises Isolation. The default Linux VMA
design prioritizes flexibility over the determinism required for safety.

e Defining the "Safe VMA" Architectural Roadmap. We must identify
and address:

o  Fundamental Assumptions and Risks in the VMA lifecycle.
o  Corner Cases in allocation and memory pressure handling.
o  Necessary changes to the "Software Around the VMA.

ELISA

Enabling in
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




Introduction & Scope

The VMA's Critical Role

Isolation and Resource Management in Mixed-Criticality Systems

e Heuristic Overcommit: The Linux default, prioritizes flexibility.

e Never Overcommit: Safe systems prefer this policy, which restricts allocations to a
defined limit to avoid unexpected failures.

e An Architectural idea is "Allocation on Usage (AoU)": Safer processes pre-allocate all
necessary memory.

ELISA Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Enabling in
Applications




Introduction & Scope

Scope and Goal

Defining the "Software Around the VMA" and the Functional Safety Mandate

e Strict temporal and spatial isolation.
e Deterministic resource access.
e Preventing unintended access across process boundaries.

e (Guaranteeing VMA integrity against races.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




VMA Architecture: Lifecycle & Features

e Introduction & Scope

e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety

e Epilogue

Where Processes Get Their Memory... One Box at a Time.

ELISA

Enabling in
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




VMA Architecture: Lifecycle & Features

The VMA's Full Scope

Governing User Space AND Kernel Space § ey
% Linear mapping
. ©
e User VMAs: Private, per-process address spaces. £ | imallocfioremap
X || Kernel image
e Kernel VMA: Global, shared by all processes. Kemelmodiies
e Main kernel memory zones: 8
Q.
o  Linear Map: the direct 1:1 mapping of physical RAM, ?
o  vmalloc Area: non-contiguous mappings for dynamic kernel allocations, §
o  Vmemmap: metadata mapping for struct page descriptors, and
o  Fixmap: reserved static mappings for special kernel addresses. STACK
HEAP
Text

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Applications




VMA Architecture: Lifecycle & Features

Processes VMA Lifecycle!l ...

Initialization (fork, execve) | code
—>Heap
o fork(): Clonemm struct & VMAs — shared pages via CoW. —> Stack
: fork()
e execve(): Tear down old VMAs (except shared); rebuild text, data, Lor
heap, StaCk. Child Process (After fork)

—> Code (shared CoW)

e Safety note: Shared memory can persist intentionally; defaults like | eap (snaved o)
O_CLOEXEC limit accidental carryover. > Stack (shared Cow

o« o . . . . execve()
e init process: First process built by kernel; later rebuilt via execve (). @

Child Process (new image)

e Kernel VMA: Always inherited, shared by all processes.

—>» New Code / Data / BSS

—> New Stack / Heap

L3> Keeps Shared Memory Areas

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




VMA Architecture: Lifecycle & Features

Processes VMA Lifecycle Il

Dynamic Allocation & Runtime Mechanisms

e Syscalls: mmap (), munmap (), brk () /sbrk (), mprotect (), mremap ()
e mlock()/mlockall(): Prevent swap-out, improve temporal determinism.
e Risks: Non-deterministic allocation, races, and layout shifts under load.
e Safety Practices:

o Pre-allocate & lock critical pages.

o Check all syscall results.

o Understand mapping & overcommit behavior.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




VMA Architecture: Lifecycle & Features

VMA Instrumentation and Debugging Tools

e /proc/<pid>/maps, /proc/<pid>/smaps. show VMA layout and usage.

e KASAN: Shadow-memory detector for invalid access. Excellent for testing, but heavy,
partial, and nondeterministic.

e KFENCE: Lightweight guard-page monitor for production, but samples only a tiny
fraction of allocations.

e Hardware Tagging (ARMG64): reduces overhead, future path for in-field safety
diagnostics.

ELISA

Enabling in
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




The Linear Mapping Threat

e Introduction & Scope

e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety
e Epilogue

A Straight Tunnel Through Complexity... but at What Safety Cost?

ELISA

Enabling
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




The Linear Mapping Threat

Historical Context

The 32-bit Lowmem/Highmem Partitioning

e 4 GB total VA space: typically split 3 GB user / 1 GB kernel (CONFIG VMSPLIT *).
e Lowmem: Permanently mapped kernel region.
e Highmem: Unmapped RAM, accessed only via temporary mappings.

e Accidental Safety: Kernel couldn’t touch all RAM at once... Natural containment.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




The Linear Mapping Threat

The Linear Mapping Threat |

The Accidental Unification of Memory

e 64-bit kernels dropped Lowmem/Highmem juggling: one
continuous Linear Map.

e Every physical page gets a fixed virtual twin (fast & simple).

e Kernel can now address all memory: including user pages.

e Convenience removed the natural isolation barrier.

BUILT OVER THE

S PERFORMANCE BRIDGE
OLD SAFETY WALL.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




The Linear Mapping Threat

The Linear Mapping Threat I

Adjacent Security Failure

e Kernel allocators (kmalloc, slab, per-CPU data) all use the Linear z 9
] T
3 g
Map. % :
e Kernel and user pages live in one physical continuum, no - §
hardware fence. g
Silent
. . . C i
e A small overflow in kernel space can corrupt neighboring user L
pages. c
&
e Theriskisn't malice... it's proximity. g
[=]
=

EaLh||,,§A n Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Applications




The Linear Mapping Threat

The Safety Conflict

Isolation Broken

e Unified View: Every physical page has a twin in the kernel's | o

8 [ vmemmap
virtual map: no true boundary. 2 LKeﬂ:ﬁﬂﬁge Physical mem
N | g el e hysical mer
e The Implicit Trust: Safety depends entirely on the kernel o — —

never making a memory error.

e Reality Check: One stray write in kernel space can corrupt
user data, no guardrail.

User Space

e Safety Gap: Functional safety demands provable
separation — the linear map removes it.

ELISA

Enabling in
Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




The Linear Mapping Threat

Reconsidering Isolation

Highmem as a Conceptual Barrier

e Old Idea, New Role: 32-bit Highmem once split memory by necessity; today, it could
define safety boundaries by choice.

e Selective Reach: Mark safety-critical processes so their pages stay outside the kernel's
linear map, reachable only via explicit mappings.

e Controlled Access: Legacy interfaces like /dev/mem must respect these no-go zones.

e Goal: Limit what the kernel can touch... not to weaken Linux, but to contain its reach.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




The Linear Mapping Threat

Potential Software Mitigation:

Proof-of-Concept Isolation: secretmemfd ()

e Goal: Show that user-space memory can exist outside the kernel’s linear map.

e Mechanism: secretmemfd () allocates pages unmapped from the kernel view — even privileged
code cannot access them.

e Value: Demonstrates that physical-level isolation is technically possible in today’s Linux.

e Limitations:

o copy to user() /copy from user () fail onthese regions.
o  Only the owning process can safely access its data.
o Designed for security, not safety... not transparent to existing software.

(Note: behavior depends on architecture; ARM64 may limit full page unmapping.)

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




Safety Features: Defense & Detection

e Introduction & Scope
e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety

e Epilogue

A fortress under siege... brave defenders, but no peace of mind.

ELISA

Enabling in
y Applications

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools




Safety Features: Defense & Detection

Defense Baseline I: Kernel Hardening

List Poisoning and Randomized Freelist Management

e List Poisoning: Checks list integrity and poisons freed pointers to catch early

use-after-free or double deletions.
o Great for early bug detection, but offers no containment.

e SLAB Hardening: Shuffles SLAB allocations to stop predictable heap layouts.
o Boosts security; adds non-determinism: not ideal for safety.

e KASAN: Uses shadow memory to detect invalid accesses and use-after-free.
o Powerful diagnostic tool, too heavy for production safety use.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




Safety Features: Defense & Detection

Defense Baseline Il: Memory Control

OOM Killer and Overcommit Policies (A Safety Compromise?)

e OOM Killer: When memory runs out, it frees space by killing a process
based on heuristic scoring. Hoacer
o Keeps the system alive, not predictable.

e Overcommit Policies: (vin. overcommit memory = 0/1/2) decide

how much virtual memory to promise.
o Default favors efficiency over guaranteed success.
. . . lghyndo you Keep It ar{m}:\Sesdme to
e Memory Pressure Handling (PSI, DAMON): Monitor stalls and reclaim [*™ see TR e
memory under stress.
o Reactive, heuristic: help performance, not determinism. V(@'@
e Safety Gap: These mechanisms ensure survival, not bounded
behavior.

o Good for uptime, weak for safety.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




Safety Features: Defense & Detection

Detection: VMA Cache Integrity

Identifying and Preventing Fast-Path Corruption

e VMA Cache Integrity Risks: Concurrency and timing bugs can corrupt cached
VMA entries.

e Real-world Failures:
o CVE-2018-17182: Sequence-number overflow led to stale VMA cache entries and crashes.
o CVE-2016-5195 (Dirty COW): Race in copy-on-write logic broke page-protection rules.

e Safety Lesson:
o These aren't attacks: they're accidents of timing.

o They prove that fast-path optimizations can silently break memory isolation.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




Defining the Path to Functional Safety

N Mer | | . Introduction & Scope

| | e VMA Architecture: Lifecycle & Features
e The Linear Mapping Threat

e Safety Features: Defense & Detection

e Defining the Path to Functional Safety

DEADLOCK
DESERT

e Epilogue

‘X’ Never Marks the Spot... Except When It Does.

ELISA

Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Enabling in
Applications




Defining the Path to Functional Safety

The Architectural Gap

Why Existing Defenses are Insufficient Against Linear Mapping Threats

e Existing Defenses: Built to stop exploitation after a fault: they react to bad behavior.

e The Linear Map Threat: A design flaw, not an exploit: it makes faults inherently
possible.

e The Gap: Without spatial isolation or deterministic allocation, Functional Safety can't be
guaranteed: even when no attacker is present.

ELISA Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Enabling in
Applications




Defining the Path to Functional Safety

Functional Safety Requirements for VMA

What “safe” memory management must guarantee

e Spatial and Temporal Isolation: Each VMA must stay within its bounds for its entire
lifetime: no neighbor overlap, no kernel overreach, no cross-process bleed.

e Deterministic Resource Access: Memory availability for safety-critical tasks must be
predictable. Enforced through Never Overcommit or Allocation-on-Usage (AoU) policies.

e Concurrency Integrity: VMAs must remain consistent under parallel activity: no
race-driven corruption like Dirty COW or stale cache reuse.

e Transparent Verification: The system must be able to prove these properties at runtime
or via traceability: safety cannot rely on trust alone.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Applications




Defining the Path to Functional Safety

Mitigation Avenues Under Review

Architectural Proposals

e Layered Isolation (Revisiting Highmem): Introduce deliberately unmapped regions to
re-establish hard separation between trusted and untrusted memory.

e Controlled Access Pools: Extend the secretmem£d () principle system-wide: defining
kernel-invisible “safe” VMAs by design, not by opt-in.

e Allocation on Usage (AoU): Commit memory only when first touched, adding temporal
determinism while reducing overcommit risk.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Applications




Defining the Path to Functional Safety

Next Step

Quantifying Risk & Feasibility: Setting the Stage for Design

e Understand Allocation Behavior: Examine SLUB’s per-CPU and global caches to see
how real allocation paths align, or conflict, with isolation goals.

e Validate Docs vs. Code: Check whether what's written still matches what's running.
Identify outdated assumptions and real-world divergences.

e Build the Roadmap: Combine all findings: VMA lifecycle, overcommit, linear map,
allocator behavior, into a structured plan for measurable risk reduction.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




Epilogue

e Introduction & Scope

e VMA Architecture: Lifecycle & Features

e The Linear Mapping Threat

e Safety Features: Defense & Detection

} ) e Defining the Path to Functional Safety

Il . Eni °

R Epilogue 29

I ™
ot

No one finds safety alone — it's always a team expedition.

ELISA i Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools

Enabling
Applications



Epilogue

From Insight to Action

Key Takeaways & Roadmap
Technical Lessons

e The Linear Map trades safety for speed.
e Security tools help, but don't ensure determinism.
e Safety needs true isolation and predictable allocation.

Next Steps for the Working Group
e Define the Safe VMA concept.
e Prototype isolation mechanisms.
e Align findings with ELISA Architecture SIG.

ELISA

Enabling Linux in Aerospace - Automotive - Linux Features - Medical Devices - OS Engineering Process - Safety Architecture - Space Grade Linux - Systems - Tools
Applications




ELISA

Enabling Linux in
Safety Applications




