
Work in Progress - License: CC-BY-4.0

Building an OSS Ecosystem

for Space
Tim Bird

Sony Electronics

NASA Goddard

Work in Progress - License: CC-BY-4.0

Who am I?

• Principal Software Engineer at Sony Electronics

• At Sony for over 20 years, including time as Sony's Linux kernel maintainer

• Member of Linux Foundation Board of Directors

• Creator and organizer of Embedded Linux Conference

(started in 2005)

• Former CTO of Lineo, an early embedded Linux company

• Working with Linux and OSS for over 30 years

• E-mail: tim.bird@sony.com

Photo by Jake Edge, LWN.net

Work in Progress - License: CC-BY-4.0

Lessons from OSS in space

Work in Progress - License: CC-BY-4.0

Space is Hard!

Work in Progress - License: CC-BY-4.0

Lessons from OSS in space

● So many constraints

• Hardware issues: Extreme Temperature variations, Radiation,

Pressure (Vacuum), Vibration

• Limits on: Power, Physical size, Weight (every gram counts)

• Requirements: Performance, Fault tolerance, Realtime, Power management

● Extremely high cost per mission

• Low units: often 1 unit

• High cost of design, testing, hardware, launch, operations

• Failure is "not an option" (but a high percentage of cubesats fail)

• This is why craft often last longer than intended

● Over-engineered, for robustness

Work in Progress - License: CC-BY-4.0

Space missions use LOTS of custom hardware

● Focus of mission is specialized science or commercial tasks ('the payload')

Almost every payload has unique, bespoke hardware

● Even base systems use novel hardware

Thrusters, batteries, stabilizers, power units, sensors, reaction control, etc.

Every mission seems to want to try something new

Work in Progress - License: CC-BY-4.0

Exceptions: COTS hardware and reuse

● SpaceX rockets

• triple-redundant pairs of COTS x86 processors

● Starlink and Planet satellite constellations

• x86 processors, not rad-hardened

● Mars Ingenuity helicopter and Perseverance rover and backshell

• Used some off-the-shelf parts:

• Qualcomm processor, COTS sensors, USB busses and hubs

Work in Progress - License: CC-BY-4.0

Space is embedded in the extreme

● Space sector is "embedded on steroids"

● Emblematic of issues that show up in embedded systems

• Constraints (power, performance, real-time)

• Custom-purpose devices and software

• Hard to find people to collaborate with (for some parts of the stack)

Work in Progress - License: CC-BY-4.0

Open Source means

collaboration

Work in Progress - License: CC-BY-4.0

What defines Open Source?

● Open Source is defined by the ability to use, but also contribute to an open

code base

● Two effects are key to Open Source

Many Minds

Effect

Problem Solver

Effect

Work in Progress - License: CC-BY-4.0

The "Many Minds" Effect

Work in Progress - License: CC-BY-4.0

Many Minds Effect

• Variety of experiences and skills results in better ideas

• Open Source strives for a meritocracy, where the best ideas win

• Light bulb analogy:

• Ideas for a project are like light bulbs...

Work in Progress - License: CC-BY-4.0

Open Source effect

• Small community = small number of ideas

• Bigger community = more ideas

•Better probability that a really good idea will emerge

Work in Progress - License: CC-BY-4.0

Many Minds Effect for bugs

● "Given enough eyeballs, all bugs are shallow"

Work in Progress - License: CC-BY-4.0

Problem Solver effect

• Problems are solved as they are encountered

• Software must come “in contact” with a problem space to advance

• Most software is written to solve a specific problem

• It does not grow outside of it’s original niche

• Openness of OSS allows it to encounter other problem spaces

• It can adapt and grow in ways different from the original use case

• The OSS virtuous circle: The more problems a piece of software solves, the more

users it attracts, and the bigger its community gets

Work in Progress - License: CC-BY-4.0

The Paradox of Embedded

Open Source

Work in Progress - License: CC-BY-4.0

Embedded OSS Paradox

● How to build an ecosystem, when your projects are unique?

● Other users don't have your use case

● Other users don't use your software

● Other users don't see your bugs

● Your software is not applied to other problem domains

● No Open Source effects!!

Work in Progress - License: CC-BY-4.0

Divide the stack!

● Separate stack into custom solutions and shared code

Work in Progress - License: CC-BY-4.0

Differentiating vs. non-differentiating software

Cost

Unique code
Differentiating

software

Non-differentiating

software

Work in Progress - License: CC-BY-4.0

Software stack – cheaper way to develop

Private Cost Unique code
Differentiating

software

Non-differentiating

software
Shared Cost Open Source Software

Work in Progress - License: CC-BY-4.0

Generalization vs. Specialization

Work in Progress - License: CC-BY-4.0

Generalization vs. specialization

• Modular

• Interchangeable

• Reusable

• Custom

• Specific

• Fit-for-purpose

Legos

Parts for a model space capsule

Work in Progress - License: CC-BY-4.0

Generalization vs. specialization (cont).

● Spaceship pieces are really good for making a spaceship

● With Lego pieces, you can make also make a spaceship

• But you can also make a boat, or a car, or a house

● Admittedly, a spaceship made of spaceship pieces will be better

● But the Lego pieces are more general and versatile

Open Source prefer “legos”

Work in Progress - License: CC-BY-4.0

The same is true of modern hardware

● A modern processor has "too much" stuff on it

● Why? – because the processors have been

generalized so they can support a wide variety of tasks

• Commoditization of mobile phone hardware has made processors

and hardware features for embedded very cheap

• There is now a processor that can run Linux, that costs 15 cents

● Your embedded app is unlikely to use every IP block

on a modern processor

• Those are like the rough edges and extra "nubs" on a lego model

Work in Progress - License: CC-BY-4.0

Modern software stacks are also complex

• Bravia TV has

about 56 million

lines of code

• 80 to 90% is

open source

Work in Progress - License: CC-BY-4.0

Overbuilding, tight margins, and functional safety

● Does Bravia TV need all that code? (NO)

● Does any embedded product need everything on the SoC? (NO)

● We accept waste (overbuilding) in the processor space but not in the software

space

● Functional Safety often means trying to minimize the software to reduce

complexity and increase testability

Work in Progress - License: CC-BY-4.0

Examples of overbuilding

● Some space missions used shell scripts and Linux distro features to extend

capabilities or resolve issues

● Ingenuity used compression to solve a problem, when not in the original plan

Possible because gzip was in the distribution anyway

● Asteria and Aalto cubesats provided shell callouts

Work in Progress - License: CC-BY-4.0

Tips to build an ecosystem

Work in Progress - License: CC-BY-4.0

Tips to build an ecosystem

● Increase the community

● Create opportunities for non-experts

● Improve generalization

● Avoid unnecessary specialization

● Find allies

Work in Progress - License: CC-BY-4.0

Increase the community

● Actively invite others

● Do something to make the community more interesting or valuable

• Space has built-in interest factor

• Gamification

● Reduce barriers to participation

• Lots of documentation

• Automation (e.g. project setup tools)

● Contributors come from users

You have to have users in order to increase the pool of contributors

Work in Progress - License: CC-BY-4.0

Create opportunities for contribution by non-experts

● Contributions can be in many forms

Usage reports

Bug reports

Documentation

Infrastructure management

Testing

Reviewing

Marketing and advocacy

Code

Work in Progress - License: CC-BY-4.0

Improve generalization

● Extend existing mechanisms rather than add new ones

• Candidate: Use a Linux IPC instead of your own message bus

● Make sure your contributions handle other people's use cases

Work in Progress - License: CC-BY-4.0

Avoid unnecessary specialization

● Use the same hardware that others are using

● Use the same sub-systems and software technologies as others

● Don't over-reduce

Ship with more than the absolute minimum you need

Work in Progress - License: CC-BY-4.0

Find technical allies

● Find people who care about your issues, and work with them

● Sometimes, it's not who you expect:

• Small system size

• Security researchers interested in reduced attack surface

• Cloud service companies (for low-footprint VMs)

• Low power usage

• Mobile phone developers, IOT developers

• Data Center Linux developers

• Fault Tolerance

• Banking, Routers

Work in Progress - License: CC-BY-4.0

Technical Allies – boot time example

● Recently started a Boot Time Special Interest Group (SIG)

● Found lots of people from different sectors interested:

• Automotive, Consumer Electronics, Desktop, Mobile

• Some unexpected: Cloud Servers, Supercomputers

• For quick service spinup, initialization of chips with high CPU count

• Lots of developers with limited kernel development experience

• I created automated tools and a wiki for people to contribute data and docs

Work in Progress - License: CC-BY-4.0

Conclusion

Let's work together on

a bright and interesting future!

By NASA - https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf, Public Domain

Work in Progress - License: CC-BY-4.0

Thanks!

Work in Progress - License: CC-BY-4.0

Licensing of Workshop Results

All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0)
[https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel code
contributions.

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

https://creativecommons.org/licenses/by/4.0/

	Slide 1: Building an OSS Ecosystem for Space
	Slide 2: Who am I?
	Slide 3: Lessons from OSS in space
	Slide 4: Space is Hard!
	Slide 5: Lessons from OSS in space
	Slide 6: Space missions use LOTS of custom hardware
	Slide 7: Exceptions: COTS hardware and reuse
	Slide 8: Space is embedded in the extreme
	Slide 9: Open Source means collaboration
	Slide 10: What defines Open Source?
	Slide 11: The "Many Minds" Effect
	Slide 12: Many Minds Effect
	Slide 13: Open Source effect
	Slide 14: Many Minds Effect for bugs
	Slide 15: Problem Solver effect
	Slide 16: The Paradox of Embedded Open Source
	Slide 17: Embedded OSS Paradox
	Slide 18: Divide the stack!
	Slide 19: Differentiating vs. non-differentiating software
	Slide 20: Software stack – cheaper way to develop
	Slide 21: Generalization vs. Specialization
	Slide 22: Generalization vs. specialization
	Slide 23: Generalization vs. specialization (cont).
	Slide 24: The same is true of modern hardware
	Slide 25: Modern software stacks are also complex
	Slide 26: Overbuilding, tight margins, and functional safety
	Slide 27: Examples of overbuilding
	Slide 28: Tips to build an ecosystem
	Slide 29: Tips to build an ecosystem
	Slide 30: Increase the community
	Slide 31: Create opportunities for contribution by non-experts
	Slide 32: Improve generalization
	Slide 33: Avoid unnecessary specialization
	Slide 34: Find technical allies
	Slide 35: Technical Allies – boot time example
	Slide 36: Conclusion
	Slide 37: Thanks!
	Slide 38: Licensing of Workshop Results

