
License: CC-BY-4.0

Dan Walsh <dwalsh@redhat.com> Douglas Schilling Landgraf <dougsland@redhat.com>

NASA Goddard

Containerization in Space
Podman for Mission-Critical Operations and Resilience

mailto:dwalsh@redhat.com
mailto:dougsland@redhat.com

Work in Progress - License: CC-BY-4.0

Please read
out loud all
text in
RED

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To say
Make a copy
Rather than
Make a Xerox

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To say
Tissue
Rather than
Kleenex

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To say
Container Registries
Rather than
Docker registries

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To say
Container Images
Rather than
Docker images

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To say
Containers
Or
OCI Containers
Rather than
Docker Containers

Work in Progress - License: CC-BY-4.0

I Promise

Work in Progress - License: CC-BY-4.0

To
give this presentation
a
5 Star review

Work in Progress - License: CC-BY-4.0

Sit Down

Work in Progress - License: CC-BY-4.0

$ podman run -ti docker.io/osrf/space-ros
Trying to pull docker.io/osrf/space-ros:latest...
Getting image source signatures
Copying blob bd159e9d0602 done |
Copying blob b65f1d11f71a done |
Copying blob aae34eb940be done |
Copying blob a7f2481d1ef1 done |
…
spaceros-user@194fad252765:~$ ros2 --help
usage: ros2 [-h] [--use-python-default-buffering] Call `ros2 <command> -h` for
more detailed usage. ...

ros2 is an extensible command-line tool for ROS 2.
…

License: CC-BY-4.0

 How can Podman and friends help in critical mission?

Spacecraft on orbit of Earth planet.

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

Fedora

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

Fedora

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

OpenShift Fedora

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

OpenShift FedoraOpenStack

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

OpenShift
RHIVOS

FedoraOpenStack

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

OpenShift
RHIVOSBootc

FedoraOpenStack

License: CC-BY-4.0

Dan Walsh: Ursula of containers
Tentacles in every project

RHEL

OpenShift
RHIVOSBootc

FedoraOpenStack

Red Hat
AI

Shameless Plug
Buy my book

Podman in Action

https://www.manning.com/books/podman-in-action

Shameless Plug
Red Hat gives it away:

Podman in Action

Thanks

https://developers.redhat.com/e-books/podman-action

License: CC-BY-4.0

License: CC-BY-4.0

License: CC-BY-4.0

License: CC-BY-4.0

License: CC-BY-4.0

License: CC-BY-4.0

License: CC-BY-4.0

● OCI Compliant
● Minimal footprint
● Rootless
● Support out of box:

○ Namespaces, SELinux, Cgroups, seccomp
● CNCF Donation

 How can Podman and friends help in critical mission?

Work in Progress - License: CC-BY-4.0

Red Hat announces submission of
 Podman Desktop, Podman, and Bootc

CNCF Sandbox

License: CC-BY-4.0

License: CC-BY-4.0

CNCF Donations

License: CC-BY-4.0

 RHEL/RHIVOS with Podman is working thru FuSA (ISO2626-2)

Red Hat is currently working in certify RHEL as platform (includes Podman) for
Automobile industry

Work in Progress - License: CC-BY-4.0

Red Hat In-Vehicle Operating System

RHIVOS

Work in Progress - License: CC-BY-4.0

License: CC-BY-4.0

Image based (bootc)

Binary distribution

based on

Red Hat Enterprise Linux

RHIVOS

License: CC-BY-4.0

Real Time Kernel

RHIVOS

License: CC-BY-4.0

Design Minimal OS Image as a container

Same OS Platform everywhere

Atomic update

Applications built, tested and deployed as containers

ComposeFS

RHIVOS

Work in Progress - License: CC-BY-4.0

https://github.com/containers/composefs

● New file system feature in Linux kernel
○ Built on top of Errorfs and OverlayFS

● File System integrity

○ Supports fs-verity validation of the content files.
○ Backing content cannot be changed (by mistake or

malice) without being detected when file is used.

ComposeFS RHIVOS

https://www.kernel.org/doc/html/latest/filesystems/fsverity.html

Work in Progress - License: CC-BY-4.0

(very) container friendly RHIVOS

Build container applications from desktop

Software independent from Base OS

License: CC-BY-4.0

FuSa
Functional Safety

RHIVOS

Work in Progress - License: CC-BY-4.0

Functional Safety is the process of reducing the risks of
both simple and complex systems so that they function
safely if a hardware, operational, or human failure
occurs. When every safety function is carried out as
prescribed and the performance standards for each
safety function are met, “Functional Safety” has been
achieved.

RHIVOS

License: CC-BY-4.0

Traditional Functional Safety
● System design documents are written
● Code is produced to meet the requirements
● Tests are written to guarantee that the code functions as designed.

RHIVOS

License: CC-BY-4.0

Linux Functional Safety
● System design documents are written

Linux system is already written, with no real design document.

RHIVOS

License: CC-BY-4.0

 Could you please explain why not OpenShift in this case?

In A Vehicle?

Work in Progress - License: CC-BY-4.0

● System might be in a inconsistent state, but is progressing toward it.

Kubernetes is based on
"eventual consistency."

Work in Progress - License: CC-BY-4.0

● System might be in a inconsistent state, but is progressing toward it.
● The braking system will eventually activate?

Kubernetes is based on
"eventual consistency."

Work in Progress - License: CC-BY-4.0

Kubernetes is based on
"eventual consistency."

● System might be in a inconsistent state, but is progressing toward it.
● The braking system will eventually activate?

○ Not consistent with Functional Safety.

Work in Progress - License: CC-BY-4.0

https://www.redhat.com/en/blog/running-containers-cars�

�

● Application profiles

○ 1 Profile ⇒ 1 or more applications

○ 1 Application ⇒ 1 systemd service file

○ Capability to switch between different profiles

■ Bootup

■ Network

■ Multi-User

■ Graphical User

Think of Systemd as your local host orchestrator

● RHIVOS Application profiles

○ 1 Profile ⇒ 1 or more applications

○ 1 Application ⇒ 1 systemd service file

○ Capability to switch between different profiles

■ Startup

■ Reverse

■ Drive

Think of Systemd as your local host orchestrator

License: CC-BY-4.0

What do you get if you squash a
Kubernetes kubelet?

https://kubernetes.io/docs/concepts/overview/components/#kubelet

License: CC-BY-4.0

What do you get if you squash a
Kubernetes kubelet?

A Podman Quadlet

https://kubernetes.io/docs/concepts/overview/components/#kubelet

License: CC-BY-4.0

Quadlet example
$ sudo cat /etc/containers/systemd/mysleep.container
[Unit]
Description=The sleep container
After=local-fs.target
[System]
Restart=always
[Container]
Image=registry.access.redhat.com/ubi9-minimal:latest
Exec=sleep 1000
[Install]
Start by default on boot
WantedBy=multi-user.target default.target

Work in Progress - License: CC-BY-4.0

[Unit]
Description=The sleep container
After=local-fs.target
SourcePath=/etc/containers/systemd/mysleep.container
RequiresMountsFor=%t/containers

[System]
Restart=always

[X-Container]
Image=registry.access.redhat.com/ubi9-minimal:latest
Exec=sleep 1000

[Install]
Start by default on boot
WantedBy=multi-user.target default.target

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
KillMode=mixed
ExecStop=/usr/bin/podman rm -f -i --cidfile=%t/%N.cid
ExecStopPost=-/usr/bin/podman rm -f -i --cidfile=%t/%N.cid
Delegate=yes
Type=notify
NotifyAccess=all
SyslogIdentifier=%N
ExecStart=/usr/bin/podman run --name=systemd-%N --cidfile=%t/%N.cid --replace --rm --cgroups=split
--sdnotify=conmon -d registry.access.redhat.com/ubi9-minimal:latest sleep 1000

License: CC-BY-4.0

Freedom From Interference
using Containers

 Why FFI is important for critical systems?

63

“Ensuring that safety-critical components operate
independently and are not disrupted by faults or
unintended interactions from other system components”

License: CC-BY-4.0

ASIL versus QM
● Automotive Safety Integrity Level (ASIL)

○ Functional Safety for Road Vehicles standard.

○ Treating by default all running software on the system while in safety mode as ASIL-B with the
exception of the QM software.

● Quality Management (QM)
○ All assessed risks are tolerable.

○ Safety assurance controls unnecessary.

○ Standard quality management processes are sufficient for development.

Examples of ASIL Services

65

Driver Drowsiness
Detection Systems

Collision Warning
 Systems

Tyre Pressure
Systems

Blind Spot Detection
 Systems

Rear-View Camera and
Parking Assistance

Advanced Driver
Assistance Systems

Airbag Control
 Systems

Brakes
 Systems

Examples of QM Services

66

Navigation
Systems

Climate Control
Systems

Infotainment
Systems

Power Seats Interior Lighting Systems Power Window

License: CC-BY-4.0

 The QM project

License: CC-BY-4.0

Work in Progress - License: CC-BY-4.0

License: CC-BY-4.0

Isolate QM environment with Podman Quadlet

License: CC-BY-4.0

Quadlet: Describe a container running within systemd
/usr/share/containers/systemd/qm.container

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

[Container]
AddCapability=all
AddDevice=/dev/kvm
ContainerName=qm
Exec=/sbin/init
Network=host
PodmanArgs=--security-opt label=nested --security-opt unmask=all
ReadOnly=true
Rootfs=${ROOTFS}
SecurityLabelFileType=qm_file_t
SecurityLabelLevel=s0
SecurityLabelType=qm_t
Volume=${ROOTFS}/etc:/etc
Volume=${ROOTFS}/var:/var

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Names the Slice for all processes within the QM
ASIL Manager process can Modify all QM processes using the QM.slice

Note

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Configures cgroups only run QM on CPUs 6-11
ASIL apps can run on CPUS 0-11
Very system specific

Note

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Default CPUWeight is 100.
QM Apps only get ½ CPU priority of ASIL Processes

Note

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Default IOWeight is 100.
QM Apps only get ½ IO priority of ASIL Processes

Note

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Hunger Games
Katniss Everdeen Options

1. Kernel under Memory pressure kill QM before ASIL
2. Default OOM Score is 0
3. Possible OOM Scores -1000 -> 1000
4. Containers kill prioritized over QM process.

Note

License: CC-BY-4.0

[Service] configures systemd Cgroups & service handling

[Service]
AllowedCPUs=6-11
CPUWeight=50
Delegate=true
IOWeight=50
ManagedOOMSwap=kill
MemorySwapMax=0
Slice=QM.slice
Restart=always
OOMScoreAdjust=500
Environment=ROOTFS=/usr/lib/qm/rootfs

Set the environment variable ROOTFS to be used in the
container section of the quadlet file.

Note

78

composefs crun

3rd vendor
software
integration

Tire
pressureUpdates

on the air

Safety
security
settings

Radio AM/FM
News
PodCast

User
profile

bluetooth

Wifi Client

Sensors

Google
Assistant

Cruise
Control

Climate

Apple Car
Android Auto

Cameras

Car Battery

Wireless
charger

Trailer
Lights

 Platform running on: Automobile Operational System based on Linux

qm bluechi glibc kernel cgroups

Car Manufacturer’s End to end vehicle software platform

How complex it can be to an OS?

79

bootc

crun

qm

bluechi

glibc
kernel

cgroups

But… How complex it can be to create a Space Grade Linux?

Space Shuttle Columbia Cockpit. Credit: NASA

composefs

80

bootc

crun

qm

bluechi

glibc
kernel

cgroups

Space Shuttle Columbia Cockpit. Credit: NASA

composefs

Due time limit, let’s have a
group discussion after the
talk :)

But… How complex it can be to create a Space Grade Linux?

81

Is Linux tested to satisfy and mitigate risk
analysis for automotive?

82

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

AC

Let’s image the hacker is smart enough and is able to break the initial security
layers and it’s ALSO able to connect to a nested container as root….

83

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

Next step: Deploy the crypto miner and steal all CPUs priority to mine
while the car is in charge mode and send it to his/her digital wallet.
(from 9PM until 5AM - owner is sleeping)

subZer0> ./make-me-rich
10:24:45 - reading the system …….
10:24:46 - Setting make-me-rich as daemon and hiding files ….
10:24:47 - collecting current OS scheduler ……..
10:24:48 - waiting car be in charge mode …..
…….
21:55:51 - Car is now connected to be charge …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to make-me-rich…
FAILED, unable to access Operational System system call

84

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

Lets understand what just happened…..

Nested Container ASIL host (side)

journalctl -r
<SNIP>
SELinux is preventing make-me-rich
from map access on the file
/usr/lib64/ld-linux-x86-64.so.2.
... avc: denied { map } <----- HERE

....avc: denied { read } <----- HERE

subZer0> ./make-me-rich
10:24:45 - reading the system …….
10:24:46 - Setting make-me-rich as daemon and hiding files
….
10:24:47 - collecting current OS scheduler ……..
10:24:48 - waiting car be in charge mode …..
…….
21:55:51 - Car is now connected to be charge …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy…
FAILED, unable to access Operational System system call

85

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

But guess what, let’s keep with our imagination….

For some reason, the trainee Disabled SELinux in that
car model for tests and all car models got updated from the
cloud image… OH NO! :-/

Let’s simulate this situation setting the the car OS to permissive mode
[root@RHIVOS-carOS ~]# setenforce 0

86

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

subZer0> ./make-me-rich

21:55:51 - Car is now connected to charged …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to
make-me-rich: steal_cycles_sched_deadline failed to
boost pid 0: Operation not permitted

87

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

subZer0> ./make-me-rich

21:55:51 - Car is now connected to charged …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to
make-me-rich: steal_cycles_sched_deadline failed to
boost pid 0: Operation not permitted

BUT WHO SAVED THE DAY?

88

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

ME ?

89

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

+ SECComp

Seccomp is a Linux kernel feature that provides a way to
filter and limit the system calls available to a process. By
using seccomp, Podman enhances the security of containers
by minimizing the attack surface and reducing the risk of
malicious activities.

“Several layers of security…”

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

● Rocket launch Schema

Saturn V by NASA

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

class RocketLaunch(BaseNode):
 """
 def __init__(self, rocket_name, payload, mission_type="standard"):
 """
 Initialize a RocketLaunch instance and a ROS2 Node.

 Parameters:
 - rocket_name (str): Name of the rocket.
 - payload (str): Description of the payload.
 - mission_type (str): Type of mission (e.g., 'curiosity', or 'standard').
 """
 super().__init__('rocket_launch_node')
 self.rocket_name = rocket_name
 self.payload = payload
 self.mission_type = mission_type.lower()

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

● Rocket launch Schema
● Rover

Curiosity Rover by NASA

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

class BaseUGVController:
 """
 This code is all about talking to a robot car (called a UGV, or Unmanned
Ground Vehicle).

 It supports basic wheel movement, independent wheel control (if the robot
supports it), ROS-based velocity control,
 motor PID configuration, and now movement commands for turning,
moving backward, and forward.
 """

 def __init__(self, ssid="UGV", password="12345678", ip="192.168.4.1",
interface_name=None):
 """
 Initialize the UGV controller.

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

<SNIP>
 def move_right(self, speed=0.5):
 def move_left(self, speed=0.5):
 def move_backwards(self, speed=0.5):

def cmd_ros_control(self, linear_velocity, angular_velocity):
 """
 Control the robot using ROS-style velocity commands.

 Args:
 linear_velocity (float): The moving linear velocity in m/s
(meters per second).
 angular_velocity (float): The steering angular velocity in
rad/s (radians per second).

<SNIP>

License: CC-BY-4.0

 Now let’s IMAGINE such distro in SPACE - What’s required?

● Rocket launch Schema
● Rover
● Linux Distribution

Space Grade Linux Distribution

License: CC-BY-4.0

Example of similar industry: CentOS Auto/Fedora/RHIVOS:

License: CC-BY-4.0

 Wow!

License: CC-BY-4.0

Initial Code already available

git clone https://gitlab.com/fedora/sigs/robotics/src/ros2-rover-demo

License: CC-BY-4.0

BUT Wait. As we are speaking about “Space Grade Linux Spec…”

Should we also start thinking about constructing a minimum API
Abstract for space related industry?

Should we use this code demo here as initial base?

Due time limit, let’s have a group discussion after the talk :)

License: CC-BY-4.0

Rocket Launcher Schema (ROS2 version)

git clone https://gitlab.com/fedora/sigs/robotics/src/ros2-rover-demo

cd ros2-rocket-demo/
podman build -f Containerfile.autosd -t localhost/ros2-rocket:latest .
podman run --privileged --network -d --rm --name rhover localhost/ros2-rocket:latest
podman exec -it ros2-rocket /bin/bash

systemctl status rhover-pull-image

License: CC-BY-4.0

RHover: ROS2 + Containers + QM
● Control node (critical) runs in QM
● Requests/Messages sent through

the ROS2 MW
● ROS2 inside Linux Containers
● https://github.com/autosd-vss-mw/ro

s2-rocket-demo

QM

rhover_control.engine_service

rhover_control.client

ROS2 MIddleware Implementation

Req 1

Res 1

https://github.com/autosd-vss-mw/ros2-rocket-demo
https://github.com/autosd-vss-mw/ros2-rocket-demo

License: CC-BY-4.0

Talk is cheap, show me the code/demo… (Linus Torvalds)

104

 SPACE DEMO

http://www.youtube.com/watch?v=_U0IYuIWwqk

License: CC-BY-4.0

The Fedora Robotics SIG
● Goal: Enable Fedora as a robotics development environment

○ Enable robotics frameworks in containers such as ROS2
○ Development environment using containers and toolbox

● Leverage edge container technologies such as AutoSD
● What we have:

○ A base ROS2 fedora image built from source
○ A CentOS Stream 9 image that uses ROS’ RHEL repositories

● Where:
○ https://gitlab.com/fedora/sigs/robotics
○ https://docs.fedoraproject.org/en-US/robotics-sig/

● Help wanted!
 Looking for more info? Contact the SIG Leader: Leonardo Rossetti
<lrossett@redhat.com>

https://gitlab.com/fedora/sigs/robotics
https://docs.fedoraproject.org/en-US/robotics-sig/

License: CC-BY-4.0

Thank you NASA and ELISA/Linux Foundation
To the NASA folks:

"Please keep leading the path to space and make us dream of
the impossible, making it possible."

License: CC-BY-4.0

Licensing of Workshop Results
All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0)
[https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel
code contributions.

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

https://creativecommons.org/licenses/by/4.0/

108

 Behind the Scenes: What could go possibility wrong?

http://www.youtube.com/watch?v=FLTR2eUo7Hw

