
Work in Progress - License: CC-BY-4.0

How to use ks-nav for a feasible and 
meaningful test campaign in the 
Kernel
Alessandro Carminati, Luigi Pellecchia

NASA Goddard



Work in Progress - License: CC-BY-4.0

Agenda
● Introduction to ks-nav
● Testing challenges in the Linux Kernel
● Complexities and challenges

○ Indirect call
○ ftrace
○ High interdependency between kernel functions 

● Example of ks-nav usage
● Conclusions



Work in Progress - License: CC-BY-4.0

Introduction to ks-nav
What is ks-nav?

● A toolset that analyzes the Linux kernel binary 
and produces diagrams to simplify and visualize 
kernel complexity.

Why Analyze the Binary?
● Avoids challenges of source code analysis 

(macros, build process, compiler quirks).
● Provides accurate insights directly from the 

compiled artifact.

Core Features:
● Subsystem-aware diagrams.
● Static call trees.
● Global data usage visualization.



Work in Progress - License: CC-BY-4.0

The Testing Problem
Limitations of Coverage-Based Testing

● Coverage Without Context:
➢ Coverage tools indicate which parts of the kernel were 

executed but lack details about the source. 
● Test Suites and kcov Compatibility:

➢ Test frameworks like LTP and kselftest were not initially 
designed to work with kcov, complicating the process of 
extracting coverage data. 

● Critical Path Uncertainty:
➢ High code coverage can be misleading, as it may omit 

safety-critical paths in the context of a specific functionality 
due to their inclusion while testing other functionalities.

● Need for Test-Specific Tracing:
➢ Tools like ftrace enable a fine-grained view of test-only 

paths, allowing precise mapping of code exercised during a 
specific test campaign.



Work in Progress - License: CC-BY-4.0

ks-nav Workflow
Highlighting Test Execution vs. Possible Execution Paths

● Static Call Tree Generation:
➢ ks-nav performs static analysis, producing the call tree 

for a given top-level API.
➢ This tree represents all theoretically reachable paths in 

the code.
● Analysis of Static Call tree and definition of Critical Path

➢ Ks-nav provides simplified views of the code.
➢ Expert driven activity aimed to provide a list of critical 

path that need to be tested.
● Dynamic Matching with Test Data:

➢ ftrace collects execution data during tests, creating a 
runtime call tree.

● Ensuring Coverage of Critical Paths:
➢ Runtime tree is matched against the static call tree for 

granular function-level coverage.
➢ Critical paths identified and explicitly verified against 

the runtime data.



Work in Progress - License: CC-BY-4.0

Indirect Calls’ Challenge
Challenge of Analyzing Indirect Calls in ks-nav

● Nature of Indirect Calls:
➢ Indirect calls are extensively used in driver-based 

architectures like the Linux kernel.
➢ These calls delegate execution to functions resolved only 

at runtime.
➢ Some architectures may implement these calls with 

additional obfuscation to mitigate vulnerabilities (e.g., 
Spectre).

● Binary Analysis Limitation:
➢ Enumeration of possible targets from the binary image 

alone is impractical due to complexity.



Work in Progress - License: CC-BY-4.0

Indirect Calls’ Impact
Effect of Indirect Calls on ks-nav Diagrams

● Interruption of Call Tree Exploration:
○ Indirect calls halt the static exploration of 

code paths.
○ The resulting ks-nav diagram ends at the 

indirect call, leaving the downstream paths 
unexplored.

● Impact on Diagram Completeness:
○ Critical execution paths may remain 

unrepresented in the call tree.
○ This incompleteness can obscure potential 

issues and hinder coverage assessment.



Work in Progress - License: CC-BY-4.0

Indirect Calls: a Solution
Indirect Calls on ks-nav possible solution

● Unique Opportunity in Kernel Context:
○ Unlike generic software, the kernel includes all 

possible code paths in a given build.
○ This makes it possible to statically enumerate 

possible targets, even if the exact runtime call 
remains unknown.

● Potential for Recovery via ftrace:
○ ftrace logs provide the actual runtime resolution of 

indirect calls.
○ These logs enable amendment of the ks-nav diagram 

by re-running ks-nav with ftrace-informed APIs.



Work in Progress - License: CC-BY-4.0

ftrace Limitations’ challenge
Root Cause Investigation

● Instrumentation Assumption:
➢ Assumed available_filter_functions = kallsyms - noinstr.
➢ Reality: Not all functions in kallsyms are included in available_filter_functions.

● Compiler Behavior:
➢ Functions must be instrumented for ftrace to log them.
➢ Apparently static linkage functions can miss instrumentation code due to compiler 

optimization.
● Complexity of Mechanism:

➢ Not a straightforward not in log relationship.
➢ Compiler optimizations and directives impact instrumentation unpredictably.



Work in Progress - License: CC-BY-4.0

ftrace Limitations’ impact
Impacts on Graph Generation

● Gap in Instrumentation:
➢ Some functions are excluded from ftrace 

logging, leading to incomplete execution 
data.

● Graph Inaccuracy:
➢ Missing log entries cause root nodes for 

new, disconnected graphs.
➢ Key relationships and execution paths 

are misrepresented.
● Impact on the analysis:

➢ Critical execution paths cannot be fully 
traced.

➢ Results in unreliable testing 
completeness assessments.



Work in Progress - License: CC-BY-4.0

ftrace Limitations: a Solution 
What can be done for this?

● Change Compilers flags to make this event 
more unlikely

● Enhance ftrace produced graphs by 
integrating information from the ks-nav 
database in the post processing phase.



Work in Progress - License: CC-BY-4.0

High interdependency
The Challenge of Visualizing Kernel Call Trees

● Observation: Analysis of the call tree reveals a significant 
subset of functions with a high and identical number of 
reachable arches.

● Implication: These functions form a tightly interconnected 
core, where each function can potentially reach the 
others.

● Challenge: Simplifying such a dense graph by collapsing 
subgraphs into single nodes is not feasible due to the 
pervasive interdependencies.

● Consequence: Efforts to reduce complexity for 
visualization and analysis are hindered by this inherent 
structural characteristic.

● Solution: Use subsystem to have the graph partitioned, 
or use a different strategy, like interrupt graph exploration. 
graph_tool supports both strategies.

__arm64_sys_execve



Work in Progress - License: CC-BY-4.0

Example: ks-nav in Action

http://www.youtube.com/watch?v=gxrx3pt15p0


Work in Progress - License: CC-BY-4.0

Future Work
● Indirect Call Handling in ks-nav

➢ Current Challenge: Indirect calls interrupt call tree exploration in static analysis.
➢ Planned Approach:

■ Extract indirect call positions from the binary.
■ Use debug info and libclang to identify the object type and resolve potential targets from source code.
■ Introduce support for architectures with unique binary-level indirect call mechanisms.

● ftrace Log Translation Improvements
➢ Current Challenge: Some log entries lack clear parent-child relationships, leaving certain functions unlinked.
➢ Possible Solution:

■ Leverage the ks-nav database to identify and connect seemingly unlinked functions.
■ Explore automated heuristics to establish missing connections.

● General Enhancements to ks-nav
➢ Improve scalability for larger kernels and architectures.
➢ Promote ks-nav from commandline tool and add a web based interface to navigate the code while analyzing graphs. I 

prefer graphviz layout, but for speed’s sake, I’m also considering other javascript based libraries like viz.js



Work in Progress - License: CC-BY-4.0

Thanks 
Q&A



Work in Progress - License: CC-BY-4.0

Problems: Duplicate Symbols - Causes
Duplicate Symbol Causes

● Static Symbols in Separate Compilation Units:
➢ The linker ignores static symbols, allowing multiple functions with identical 

names across different object files.
● Header File Inlines:

➢ Functions or data defined in headers and compiled in multiple units can 
result in multiple identical symbols.

➢ Inline directives are suggestions, not guarantees… non-inlined functions 
become duplicates.

● Macro-Based Function Variations:
➢ C files that include other C files (e.g., compat_binfmt_elf.c) generate 

symbols with slight variations due to macros, but retain the same name.
● Compiler Optimizations:

➢ Compiler heuristics for inlining and static linkage introduce unpredictable 
symbol duplication.



Work in Progress - License: CC-BY-4.0

Problem: Duplicate Symbols - Consequences
Impact on ks-nav and Analysis

● Ambiguous Node Mapping:
➢ Duplicate symbols can map same function to multiple nodes, causing 

misinterpretations.
● Ambiguous names:

➢ In cases of same-named but distinct functions, can generate 
confusion when diagrams are read.

● Testing Challenges:
➢ Duplicate symbols complicate identifying critical execution paths, 

skewing coverage and safety verification.


