

NASA Goddard

Investigating the Implementation of Linux-based Payload Computers

Dongshik Won TelePIX & Korea Advanced Institute of Science and Technology <u>dw@telepix.net</u> (<u>dwon@kaist.ac.kr</u>) December 11th 2024

Agenda

- Status quo of Satellite payload electronics
- Motivations for Linux-based Computers in Space
- Development Objectives
- Timeline
- Implementation Details: Hardware, Software, Interfaces
- Operation Principles
- Key Results
- Collaboration Opportunities
- Discussion Points
- Closing Remarks

Status quo of Satellite payload electronics

- Historically, payload electronics relied on FPGA, limiting image processing capabilities.
- Raw data sent to ground stations often unusable due to cloud obstructions and transmission loss.
- Proprietary RTOS faced security vulnerabilities leading to costly patches in air-gapped environments.
- Rise of AI/ML in aerospace shifts developers towards Embedded Linux over proprietary or baremetal OS.

Solution: Modern high-performance Edge AI Computer

SpaceX Adoption on Linux

- Easy development for G-FOLD (Reentry guidance algorithm)
- x86 SOM for real-time guidance algorithms with PowerPC-based GNC Computer
- The 3.2 kernel with real-time patches
- Reference: <u>How Embedded Linux is used in Spacecrafts!</u>

NASA White Paper Insights

- White Paper: <u>Challenges Using Linux as a Real-Time Operating System</u>
- Transition Linux from RTOS
- Example: NASA Ingenuity, and many other missions
- Kernel optimization experiences is key

Lessons from SmallSat Builders

- Modern days SmallSat Compoment provider already shipped Linux based computers for Space
 - For Example: Nanoavionics (Lithuania), Endurosat (Bulgaria), Unibap (Ireland), etc...
- KAIST RANDEV: (Stock Raspberry Pi CM4 with Vanila Ubuntu were used, and have been working over 2 years!)

New World, New Approach

- Development cost considerations
- Transitioning from Desktop to Embedded systems

Modern Software Infrastructure

- CI/CD for Space (Docker, AI deployment)
- Examples: Klepsydra, Palantir MetaConstellations, SpaceCloud

Development Objectives

- Accelerate development by adopting innovative solutions. -> just do it, and try
- Reduce costs by prioritizing build-and-send over extensive space-qualified testing -> Cost of Space Qualification > Cost of In-orbit Demonstration.
- Implement rapid iteration: deploy, test, and refine quickly.
- Utilize COTS and AI boards with necessary space-grade modifications.
 - Microchip PolarFire SoC offers QML V equivalent, allowing minimal board design changes for space applications later, if needed.
 - NVIDIA Jetson platform offers no Space products, but it worth taking risks to test them in-orbit (A few reported case, but details weren't found): USC, OPS-SAT, etc. -> Therefore, it maybe cheaper to find it out by ourselves

Overview

- High-Performance AI Computer for Future Satellite Missions
- D-Orbit's ION Spacecraft (NORAD ID 60573) as a Host Payload
- Launch date: 08/16/2024 (SpaceX Transporter Rideshare 11)

One shot, one opportunity!

10 weeks: From Concept design to Satellite integrations.

Timeline

Design and Implementation

On-board Data Processing Architecture

Implementation for IOD

- Mechanical: Simple, 1U within 160 mm x 160 mm base plate
- Electrical: Choose 1 from RS-422, RS-485, CAN

Intelligent Processing Board

Main Processor: Jetson Orin NX 16GB (SOM)

ltem	Spec			
CPU	ARM Cortex-A78E v8.2 64-bit CPU			
RAM	16 GB LPDDR5			
GPU	1024 NVIDIA® CUDA® cores 32 Tensor cores (MAX Operating Frequency 918 MHz)			
DLA	2x NVDLA Maximum Operating Frequency: 614 MHz 20 TOPS each (Sparse INT8)			
Networking	10/100/1000 BASE-T Ethernet Media Access Controller (MAC)			
Peripherals	xHCl host controller with integrated PHY (up to) 3x USB 3.2, 3x USB 2.0 3x1 (or 1x2 + 1x1) + 1x4 (GEN4) PCle 3x UART 2x SPI 4x I2C 1x CAN DMIC DSPK 2x I2S 15x GPIOs			
Storage	Supports External Storage (NVMe) via x2 or x4 PCIe			
Temperatur e	Temp. Range (TJ)*: -25°C – 105°C Maximum Orin SoC Operating Temperature = Slowdown Temp = 99°C			
Power	12V, Max 25W			

Application Processor Board

Main Processor: Microchip PolarFire FPGA SoC (250T)

ltem	Spec			
CPU	1x 64-bit RV64IMAC monitor/boot core 4x 64-bit RV64GC Application cores Fmax of 667 MHz (–40 °C to 100 °C Tj), 3.125 CoreMarks/MHz, 1.714 DMIPS/MHz MPFS250T-FCVG484			
OS	Microchip Linux (Buildroot)			
RAM	16 Gbit LPDDR4 (512M x 32)			
FPGA	254K logic elements (4-input LUT + DFF) 784 Math blocks (18x18 MACC) 16 SerDes lanes of 12.7 Gbps			
Peripherals	2x GigE MACs, USB 2.0 OTG, 5x multi-mode UARTs, 2x SPI, 2x I2C, 2x CAN 2.0 Controllers. 2x PCIe Gen2 End Points/Root Ports (for IPB Interface)			
Storage	MMC 5.1 SD/SDIO (SD Card, eMMC 8GB) 1 Quad SPI flash controller (1 Gb, Serial NOR Flash) 128 KB eNVM 56KB sNVM			
Temperature	–40 °C to 100 °C Tj			
Power	12V, Max 7W			

Data Interface Board

Safety Applications

Main Processor: Microchip PolarFire FPGA SoC (250T)

ltem	Spec				
CPU	1x 64-bit RV64IMAC monitor/boot core 4x 64-bit RV64GC Application cores Fmax of 667 MHz (–40 °C to 100 °C Tj), 3.125 CoreMarks/MHz, 1.714 DMIPS/MHz (MPFS250-FCVG784E)				
OS	Baremetal (C/C++)				
RAM	16 Gbit LPDDR4 (512M x 32)				
FPGA	254K logic elements (4-input LUT + DFF) 784 Math blocks (18x18 MACC) 16 SerDes lanes of 12.7 Gbps				
Peripherals	2x GigE MACs, USB 2.0 OTG, 5x multi-mode UARTs, 2x SPI, 2x I2C, 2x CAN 2.0 Controllers. 2x PCIe Gen2 End Points/Root Ports				
Storage	MMC 5.1 SD/SDIO (SD Card, eMMC 8GB) 1 Quad SPI flash controller (1 Gb, Serial NOR Flash) 128 KB eNVM 56KB sNVM				
Temperature	0 °C to 100 °C Tj				
Power	12V, Max 7W				

SW Test Overview

On-board Image Data Pre-processing (CAS500 RAW -> L0)

- Fix Gain and perform correction to flatten images of TDI images Spacecraft attitude estimation computation testing
- Quaternion and body rate estimation algorithms with EKF

Spacecraft Attitude Estimation Computing Demo

Operation Principles

Ground Segment (Mission Control)

- 1. Control Python Script Task
- Starting a script with optinal arguments
- Stoping a script
- Pausing a script
- Checking script running status
- 2. Download Files from payload interface
- 3. Upload Files to the payload interface

Space Segment (Spacecraft)

Key Results

Ground Tests

Test Type	Date	Results
Thermal Cycling (Unit Level)	2024-01-11	Passed
Electrical Test (System Level with Bus EM)	2024-01-15	Passed
Electrical Test (System Level with Bus FM)	2024-01-30	Passed
Static Load (System Level with Bus FM)	2024-02-122024-02-18	Passed
Random Vibration (System Level with Bus F M)	2024-02-122024-02-18	Passed
Therval Vacuumn (System Level with Bus FM)	2024-03-20	Passed
Launch Campaign	2024-05-32024-06-04	Passed

In-Orbit Demonstration Results

Test ID	Date	Reps	ОВСР	Results
Test-000	2024-08-21 2024-08-22	2	v1	Passed (PID4)
Test-001	2024-09-02	3	v1	Passed (PID5, once)
Test-002	2024-09-03	3	v1	Passed
Test-003	2024-09-24	1	v2 (Added resets logic)	Passed
Test-004	2024-09-30	1	v3 (OBCP buffer flush)	Passed
Test-005	2024-10-11	1	v4 (Wait for boot)	Passed
Test-006	2024-10-15 2024-10-20	24	v5	Passed
Test-007	2024-10-22 2024-10-27	32	v5	Passed
Test-008	2024-10-29 2024-11-09	32	v5	Passed
Test-009	2024-11-12 - 2024-11-18	32	v5	Passed
Test-010	2024-11-18 - 2024-11-22	31	v5	Scheduled
Test-011	2024-12-??	??	v5	Planned (Extension)

Lessons Learned: Challenges and Mitigations

- Vague Requirements: Fixed deadlines with flexible implementations
 - Additional AI Model testing with replica model on ground.
- Design Limitations:
 - I2C line issues: IMU, Temp sensor not working -> Fixed in the next revision
 - PCIe remain untested: Boards split in half -> Test on-going with replica model
 - A few signal nets misplaced: eMMC didn't work (SD Card work around) -> 1 out 5 chances, board requires resets.
- Limited Information on Spacecraft
 - LEOP phase data was not received: Payload requires recvbuf flush before receiving new data
 -> Undocumented and passed to us after the launch -> eventually fixed.

Open Questions for Future Collaborations

- Importance of on-device AI for Space
- Defining on-device AI for Space
- Implementation strategies

We are looking for collaborators

- Kernel optimization: Memory, boot times, recovery
- OTA updates (FW, FPGA bitstreams)
- Formal verification for SW and beyond (GenAl driven SW)
- Real-time response for space conditions (COTS based quantitative measurements)
- Lightweight containers or VMs
- Al integration alternatives

Discussion Points

- Concepts for Intelligent payloads: IMU inclusion to payload?
- On-board mission planning (e.g. D-SHIELD, DSA, Starling, etc)
- Porting Zephyr to NVIDIA's AOMMC (from FreeRTOS)
- RTOS/Linux for mixed critical applications
- (Forward looking) Software testing and formal verification: How do we formally verify software that has Generative AI component?
- ClangBuiltLinux Consideration?
- "mini" (RF+OBC+ADCS+Payload Computer) Flatsat for SGL RnD
- Compiler maturization for RISC-V Architecture

Closing Remarks

tele PIX

Korea Advanced Institute of Science and Technology

For further questions, please contact Dongshik Won

- dw@telepix.net
- dwon@kaist.ac.kr

Licensing of Workshop Results

All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0) [https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel code contributions.

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

