
Verification and Validation of

the OS for NASA

Scott B. Tashakkor, P.E., NASA/MSFC
NASA Deputy Tech Fellow for Software

NASA Goddard

Outline

● Introduction

● NPR 7150.2D NASA’s Software Engineering Requirements

● Safety Critical Definition and Requirements

● Why NASA’s Requirements Apply

● What Else Is Needed

2

3

Introduction

Scope

● NASA’s Software Engineering Requirements at Agency Level

○ Centers/Programs/Projects can levy more requirements on their own

○ Technical Authorities and Risk Acceptance

● Focus on the Linux Kernel

○ Some GNU programs

● Criticality/Tools

● Specific needs information spread throughout discussion

○ No specific section

● Human Rating Requirements are not addressed

4

Software Is Not All the Same

Non-flight software

general purpose software

non-safety critical software

flight software

engineering software

safety critical software ≠

≠

≠

… and it shouldn‘t be treated the same!

5

NPR 7150.2 D

NASA Software Engineering

Requirements

6

NASA-wide software classification structure

7

These definitions are based on:

(1) usage of the software with or within a NASA

system,

(2) criticality of the system to NASA’s major

programs and projects,

(3) extent to which humans depend upon the

system,

(4) developmental and operational complexity, and

(5) extent of the Agency’s investment.

ISWE

Visual Overview of NPR 7150.2

8

ISWE

Lead Software
Engineering Initiave

Lead Software
Assurance and Safety

Initiative

Staff and advance
software engineering

capability

Measure for
Improvement

Maintains contributor
list

Benchmark Center’s
Capabilities against

this NPR

Benchmark Center’s
SWA and SW Safety

Capabilities

Establish and execute
software processes

Establish and maintain
software cost repo

Ensure Proper transfer
of software

Benchmark Center
Mapping Matrices

Review Center’s
Mapping Matrices

Comply with NPR per
Classification in

Appendix C

Contribute to Agency
PAL (Process Asset

Library)

Contract Officer:
Ensure NPR is on

contract
Authorize Compliance

Appraisals
Authorize Appriasals
against requirements

Report project status Define content of SW
documentation

Tech Authority:
Assess against NPR

Provide Software
Engineering Training

Provide Software
Assurance Training

Maintain list of
projects

Ensure Government
rights to Software

OCE, SMA, OCIO:
agree on tailoring

Maintain Process Asset
Library (PAL)

Makes Decisions on
Tailoring IVV Rqmt

Establish and maintain
software Metrics

Ensure reuse software
conforms to policies

Project Manager:
Update plans per

Classification

30 “Institutional” Requirements (Chapter 2)

Applicable to All Classifications
OCE SMA Center Director/Delegate(s)

9

ISWE

Make/Buy Tailor Classify Perform MC/DC Verify Cyber
Protection

Validate Accredit Tools Regression Test Track Changes Record Peer
Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity **

Use Secure
Coding

Architect Plan, Report Tests Test Safety Rqmts Identify CM Items Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze Software
Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-Gen
Supplier Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec Plan

(IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement, Code Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in
Repo

Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to Coding
Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer Report
Status

Develop Schedule Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product & Metrics

Regularly Review
with Stakeholders

Determine Safety
Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access to

Source Code

Dev’ers Report
Schedule

Adhere to 8739.8
SWA & SW Safety

Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement Cyber
Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic Peer
Review Process

Assess Process
Defects

100 NPR Requirements* - Applicable Based on Classification

*Note SWE-220 Cyclomatic Complexity has 2 shalls, counted as 1 here (**), Safety Critical in Red

Software Management (Chapter 3) Lifecycle (Chapter 4) Lifecycle Support-Ch5

10

ISWE
Make/Buy Tailor Classify Perform MC/DC Verify Cyber

Protection
Validate Accredit Tools Regression Test Track Changes Record Peer

Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity **

Use Secure
Coding

Architect Plan, Report Tests Test Safety Rqmts Identify CM Items Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze Software
Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-Gen
Supplier Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec Plan

(IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement, Code Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in
Repo

Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to Coding
Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer Report
Status

Develop Schedule Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product & Metrics

Regularly Review
with Stakeholders

Determine Safety
Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access to

Source Code

Dev’ers Report
Schedule

Adhere to 8739.8
SWA & SW Safety

Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement Cyber
Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic Peer
Review Process

Assess Process
Defects

Class A&B (All 101) Requirements (sc)C (93) D (65) E (12)

11

ISWE
Make/Buy Tailor Classify Perform MC/DC Verify Cyber

Protection
Validate Accredit Tools Regression Test Track Changes Record Peer

Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity **

Use Secure
Coding

Architect Plan, Report Tests Test Safety Rqmts Identify CM Items Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze Software
Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-Gen
Supplier Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec Plan

(IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement, Code Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in
Repo

Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to Coding
Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer Report
Status

Develop Schedule Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product & Metrics

Regularly Review
with Stakeholders

Determine Safety
Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access to

Source Code

Dev’ers Report
Schedule

Adhere to 8739.8
SWA & SW Safety

Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement Cyber
Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic Peer
Review Process

Assess Process
Defects

Class F Requirement Applicability (OCIO Authority)

12

13

Safety Criticality

What is NASA’s Safety Critical Software?

14

• NASA definition from NASA-STD-8739.8 B:

– Software is classified as safety-critical if it meets at least one of the following criteria:
• a. Causes or contributes to a system hazardous condition/event,

• b. Provides control or mitigation for a system hazardous condition/event,

• c. Controls safety-critical functions,

• d. Mitigates damage if a hazardous condition/event occurs,

• e. Detects, reports, and takes corrective action if the system reaches a potentially hazardous state.

– Note: Software is classified as safety-critical if the software is determined by and
traceable to hazard analysis. See appendix A for guidelines associated with
addressing software in hazard definitions. See SWE-205. Consideration for other
independent means of protection (software, hardware, barriers, or administrative)
should be a part of the system hazard definition process.

Safety Standard

● 3.7.2 If a project has safety-critical software, the project manager shall

implement the safety-critical software requirements contained in NASA-STD-

8739.8. [SWE-023]

1. Confirm that the NPR 7150.2 requirement (SWE-134) items "a" through

"l" are documented in the detailed software requirements.

2. Assessment that the source code satisfies the conditions in the NPR

7150.2 requirement (SWE-134) "a" through "l" for safety-critical

software.

15

Safety Critical Software Design (1/2)

● 3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall

implement the following items in the software: [SWE-134]

a. The software is initialized, at first start and restarts, to a known safe state.

b. The software safely transitions between all predefined known states.

c. Termination performed by software functions is performed to a known safe state.

d. Operator overrides of software functions require at least two independent actions by an operator.

e. Software rejects commands received out of sequence when execution of those commands out of sequence can

cause a hazard.

f. The software detects inadvertent memory modification and recovers to a known safe state.

(SWE-134 continued) …

16

Safety Critical Software Design (2/2)

(SWE-134 continued)

g. The software performs integrity checks on inputs and outputs to/from the software system.

h. The software performs prerequisite checks prior to the execution of safety-critical software

commands.

i. No single software event or action is allowed to initiate an identified hazard.

j. The software responds to an off-nominal condition within the time needed to prevent a hazardous

event.

k. The software provides error handling.

l. The software can place the system into a safe state.

17

Modified Condition/Decision Coverage

● 3.7.4 If a project has safety-critical software, the project manager shall ensure that there is 100 percent code test

coverage using the Modified Condition/Decision Coverage (MC/DC) criterion for all identified safety-critical software

components. [SWE-219]

○ Note: In MC/DC coverage, every condition in a decision is tested independently to reach full coverage. Each condition will be executed twice, once with the results

true and once with the results of false, but with no difference in the truth values of all other conditions in the decision. In addition, it will be shown that each condition

independently affects the decision. Any deviations from 100 percent should be reviewed and waived with rationale by the TAs approval. It is recommended that

someone independent of the developer of the code under test design and perform this testing to ensure requirement interpretation or incorrect assumptions do not

escape this testing.

18

Test
Coverage

Find Untested
code

Understand why
any untested code

exist

Cyclomatic Complexity

● 3.7.5 If a project has safety-critical software, the project manager shall ensure all identified safety-critical software

components have a cyclomatic complexity value of 15 or lower. Any exceedance shall be reviewed and waived with

rationale by the project manager or technical approval authority. [SWE-220]

○ Note: Cyclomatic complexity is a metric used to measure the complexity of a software program. This metric measures independent paths through the source code.

The point of the requirement is to minimize risk, minimize testing, and increase reliability associated with safety-critical software code components, thus reducing the

chance of software failure during a hazardous event.

19

Complexity

Reliability

20

Why does this apply?

Requirement on Off-the-shelf and Open-Source Software

● 4.5.14 The project manager shall test embedded COTS, GOTS, MOTS,

OSS, or reused software components to the same level required to

accept a custom developed software component for its intended use.

[SWE-211]

• Objective evidence is needed to show that the software works for this application

• Ariane 5 is an example of this not being done

• Users do not know all the assumptions and failure methods of the software

• This requirement does NOT mean that users must write unit tests on their own.

• Package creators may have unit and functional tests

21

Establishing Requirements

● 3.11.2 The project manager shall perform a software cybersecurity assessment on the software components

per the Agency security policies and the project requirements, including risks posed by the use of COTS,

GOTS, MOTS, OSS, or reused software components. [SWE-156]

● 4.1.2 The project manager shall establish, capture, record, approve, and maintain software requirements,

including requirements for COTS, GOTS, MOTS, OSS or reused software components, as part of the technical

specification. [SWE-050]

● 4.5.3 The project manager shall test the software against its requirements. [SWE-066]

○ Note: A best practice for Class A, B, and C software projects is to have formal software testing planned,

conducted, witnessed, and approved by an independent organization outside of the development team.

● 4.5.6 The project manager shall use validated and accredited software models, simulations, and analysis tools

required to perform qualification of flight software or flight equipment. [SWE-070]

○ Note: Information regarding specific verification, validation and credibility techniques and the analysis of

models and simulations can be found in NASA-STD-7009 and NASA-HDBK-7009.

22

Testing Requirements

23

● 4.5.10 The project manager shall verify code coverage is measured by analysis of the results of the execution of tests. [SWE-
190]

○ Note: If it can be justified that the required percentage cannot be achieved by test execution, the analysis, inspection or
review of design can be applied to the non-covered code. The goal of the complementary analysis is to assess that the
non-covered code behavior is as expected.

● 4.5.11 The project manager shall plan and conduct software regression testing to demonstrate that defects have not been
introduced into previously integrated or tested software and have not produced a security vulnerability. [SWE-191]

● 4.5.12 The project manager shall verify through test the software requirements that trace to a hazardous event, cause or
mitigation technique. [SWE-192]

● 4.5.13 The project manager shall develop acceptance tests for loaded or uplinked data, rules, and code that affects
software and software system behavior. [SWE-193]

○ Note: These acceptance tests should validate and verify the data, rules, and code for nominal and off-nominal
scenarios.

24

What else is needed?

Determinism and Protections

● Determinism will be critical for safety applications

○ Linux is an operating system that runs on unknown hardware

○ Linux must provide information or a way for users to determine a guaranteed response time

■ Required response time is defined by user

● Memory, scheduler, and resource protections

○ Linux needs to provide isolation and protections between systems

○ Prevent inadvertent memory modifications or cache protections

■ Examples: mprotect, cpuset, irqaffinity

● Robustness

25

Support

● For safety applications teams often need/want support with defined response

times

○ Teams will often pay for this type of support model

■ Example, if there is a bug or feature needed, how is this added

○ Models from some vendors are already in place to support this

○ Trade off with cost, some teams want the no-cost solution (or work with what they know

already)

26

27

Questions?

	Slide 1: Verification and Validation of the OS for NASA
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Scope
	Slide 5: Software Is Not All the Same
	Slide 6: NPR 7150.2 D NASA Software Engineering Requirements
	Slide 7: NASA-wide software classification structure
	Slide 8: Visual Overview of NPR 7150.2
	Slide 9: 30 “Institutional” Requirements (Chapter 2) Applicable to All Classifications
	Slide 10: 100 NPR Requirements* - Applicable Based on Classification
	Slide 11: Class A&B (All 101) Requirements (sc)
	Slide 12: Class F Requirement Applicability (OCIO Authority)
	Slide 13: Safety Criticality
	Slide 14: What is NASA’s Safety Critical Software?
	Slide 15: Safety Standard
	Slide 16: Safety Critical Software Design (1/2)
	Slide 17: Safety Critical Software Design (2/2)
	Slide 18: Modified Condition/Decision Coverage
	Slide 19: Cyclomatic Complexity
	Slide 20: Why does this apply?
	Slide 21: Requirement on Off-the-shelf and Open-Source Software
	Slide 22: Establishing Requirements
	Slide 23: Testing Requirements
	Slide 24: What else is needed?
	Slide 25: Determinism and Protections
	Slide 26: Support
	Slide 27: Questions?

