
How far do we go at the hardware level? 

Olivier Charrier (Wind River), Alessandro Carminati (Red Hat)
May 7-9, 2025



Agenda
● Introduction: the Software Integrator view

● Looking into the Linux Kernel

● Hardware Abstraction

Work in Progress - License: CC-BY-4.0



Introduction: 
The Software Integrator View

Work in Progress - License: CC-BY-4.0



Integration at End System Level

Request for Proposal (RFP)

The End User is assessing the suitability 
of the existing equipment and adapt his 
Safety Concept (Design) accordingly.

Work in Progress - License: CC-BY-4.0

End User (OEM)

Equipment Supplier 

The End User is cascading his Safety 
Requirement and Safety Concept 
(Design) to his supplier.

Safety Manual of an existing equipment

Business World



Integration at Equipment Level

Work in Progress - License: CC-BY-4.0

Equipment Supplier

Linux (OSS Community)

The Equipment Supplier is designing his system, including a Safety Concept 
then allocating Safety Requirements to HW and SW

Business World

OSS W
orld

Linux Integration: HW/SW + SW/SW



Linux Integration – the Who

Work in Progress - License: CC-BY-4.0

Who is performing the Linux Integration?

• The Equipment Supplier building the complete Software Stack of the Equipment

• A Hardware Supplier performing a pre-integration HW/SW of Linux + BSP

• A Linux distribution maker can propose re-usable Linux based solution for Safety

• A Solution Maker providing a pre-canned HW+SW Computing Platform with a Safety Manual

A close collaboration between all stakeholders is mandatory, early in the project, to globally define the 
integration work and to achieve safety.

The "Who" is adding his liability to the usage of OSS.



Linux Integration – the What
What does the Linux Integrator have to do about Linux?

The Equipment Supplier will always have to:

• Assess the suitability of Linux against the System Functional and Safety requirements cascaded 
by the End User

• Identify the Safety Requirements to be allocated to Linux

• Fill the potential gaps to meet Safety Certification Objectives given by Safety Standards and/or 
Safety Regulatory Agencies

This work can be split with a Hardware Supplier, Linux Distribution Supplier, or Solution Maker, but always 
within a well-defined integration framework allowing the Equipment Supplier to get his system approved 
for Safety.

Work in Progress - License: CC-BY-4.0

“Assessing whether a 
system is safe, 

requires understanding 

the system sufficiently.” 



Linux Integration – the When
When will the equipment using Linux by ready to be sold and deployed?

• When the "What" is complete in the context of following existing standard and regulation.

• When the "What" is complete in the context of a NEW approach for safety + the time required to 
convince the Safety Community and the Safety Regulator (if applicable) that such NEW 
approach brings confidence that safety is achieved.

Work in Progress - License: CC-BY-4.0



Linux Integration – the How
How can the Linux Integrator guarantee that the Safety Requirements are fulfilled 
with Linux? … with the help of 

1. To demonstrate trustfulness of the required Linux capabilities (the bigger Linux is, the more 
work to be done)

2. Implement a preventing monitoring around Linux to prevent violation of the safe behavior 
before they occur

3. Implement an error monitoring around Linux to detect violation of the safe behavior

For all the above, a certain level of information will be required on potential failure mode of the considered 
Linux Components / sub-systems.

The level of information available can have an impact on the system Availability.

Work in Progress - License: CC-BY-4.0



Looking into the Linux Kernel 

Work in Progress - License: CC-BY-4.0



Kernel Role
Provides API to userspace to interact with resources

● Software resources
● Hardware resources

Kernel configuration

● Kernel is monolithic and depends on its configuration
● Stub function can become full fledged complex depending on configuration
● Minimal configuration helps investigate the essentials.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Minimal expectation from the kernel
The logical step ahead is to ask what is the minimal expectation from kernel

● Elisa community has made a formal investigation over the topic
● Investigation shows that minimal programs are still considered the hardware 

abstracted

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Investigation - Objectives & Scope
● Objective: Define the minimum required Linux kernel features for safe 

execution.
● Scope:

○ Identify essential kernel functions & subsystems.
○ Analyze dependencies and unexpected function calls.
○ Recommend a minimal kernel configuration.
○ Produce a set of feature (subsystems) used by a minimal application and hence any 

application.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Minimum kernel requirements - Methodology
● Approach:

○ Use ftrace to trace kernel interactions. (indirect measurement leave some holes)
○ Hole filled comparing ks-nav static views and ftrace produced graphs.
○ Minimize system userspace via Buildroot.
○ To minimize the kernel dependencies, the userspace filesystem is passed as initramfs

● Data Collection:
○ min.c: Smallest viable C program for kernel interaction. Static linked without crt.o
○ ftrace_it.c : Tracing setup to capture function calls.

● Challenges: Noise from external processes, missing traceable functions.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 

Original Linux Feature WG investigation

https://github.com/elisa-tech/wg-lfscs/blob/main/lfscs-meetings/resources/Minimum_Linux_Requirements_for_Executing_a_Minimal_Application.md


Minimum kernel requirements - Key Findings
● Minimal required kernel subsystems:

○ execve syscall: Core to process execution.
○ Memory management: Address allocation & paging.
○ Tracing confirms essential interactions.

● Unexpected discovery:
○ Crypto API (chacha_block_generic ) unexpectedly required.
○ Because of the padding, the stack can be larger than a single page as it was reasonable to 

expect.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Minimum kernel requirements - Conclusion
Conclusion:

● List of the subsystem needed by 
min.c

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 

AIO CRYPTO API LOCKING PRIMITIVES PER-CPU MEMORY ALLOCATOR CHAR DRIVERS

ARM64 PORT EXEC & BINFMT API MEMBARRIER SUPPORT POSIX CLOCKS and TIMERS SLAB ALLOCATOR

CAPABILITIES FILESYSTEMS MEMORY MANAGEMENT RANDOM NUMBER DRIVER

SECURITY FUTEX MMU AND TLB READ-COPY UPDATE

CPU HOTPLUG GENERIC INCLUDE PAGE CACHE SCHEDULER



Hardware enablement
● Applications rely on kernel abstractions to access hardware.
● The community cannot be responsible for hardware-specific code.
● Hardware abstraction layers may fall within community scope.
● Safety responsibility for drivers and silicon should rest with vendors.

Aerospace · Automotive · Linux Features · Medical Devices · OS Engineering Process · Safety Architecture · Space Grade Linux · Systems · Tools 



Hardware Abstraction

Work in Progress - License: CC-BY-4.0



Linux Integration – the Hardware Support
What do we do within ELISA for the Hardware Support?

There are 2 main kinds of Hardware Support layer:

• The Support for Linux Kernel Capabilities –Tightly coupled with the Kernel Needs (ARM64 PORT)
This layer is required to evaluate the trustfulness of associated capabilities (MMU, etc.)
The scope of this part needs also to be discussed on what is included and what shall not (i.e. define 
a usage domain)

• The Hardware Resources only used by Applications, i.e. defined by the cascaded System 
Requirements.

Work in Progress - License: CC-BY-4.0



Hardware Abstraction
Potential Abstraction Layers:

o C-Std Lib File Stream (fopen, fclose, fread, etc.) - buffered
o Block Device (bio) for File System
o POSIX I/O (read, write, ioctl, etc.) - unbuffered
o mmap()
o sysfs
o Network Device
o Virtio

Work in Progress - License: CC-BY-4.0



Linux Integration – the Hardware Support
From an ELISA perspective:

• Shall we limit the User level APIs to access hardware resources (i.e. POSIX I/O and leave the C-Std 
Lib File Stream to the Application Developer)?

• Shall we drive the discussion with Silicon/Hardware vendors and Application Developers to determine 
which Abstraction Layer to analyze and provide materials for? A couple? An ordered wish list?

• Shall we leave the device drivers to Silicon and Hardware Suppliers?

o Using guidance from ELISA to develop (Best Practices Standard), analyze and document

• Shall we gather all this ELISA work into a "Linux Integration Guide for Safety Critical Systems"

Work in Progress - License: CC-BY-4.0



Thoughts ?



Licensing of Workshop Results
All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0) 
[https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel 
code contributions.

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in 
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything 
the license permits.

Work in Progress - License: CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

