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Gentle Introduction to 

▪ Runs realtime on top of Apache NuttX RTOS

▪ Modular architecture with a DDS-compatible 

middleware (uORB)

▪ Modules are fully parallelized, and thread safe

▪ Native ROS 2 Support through DDS

▪ Great hardware support

▪ Support for custom builds, remove modules 

that you don’t need

Autonomy Stack originally developed for Aerial Robotics, 

primarily Multi Rotors, over time extended to support 

Fixed-Wing, VTOL, and Over & Under Surface Vehicles.

Going to the moon! [1]

Pixhawk ModalAI VOXL



Gentle Introduction to 

▪ Multi-Vehicle type support:
▪ Multicopter, Fixed Wing, VTOL, Rover, Under 

Surface, Above Surface

▪ Balloons, Satellites, Jetpack!

▪ Flight Modes provide a set of helpers to control 

autonomy

▪ Parameter database exposing functionality back 

to users

▪ Dronecode Ecosystem

Autonomy Stack originally developed for Aerial Robotics, 

primarily Multi Rotors, over time extended to support 

Fixed-Wing, VTOL, and Over & Under Surface Vehicles.



Gentle Introduction to 

▪ Multi-Vehicle type support:
▪ Multicopter, Fixed Wing, VTOL, Rover, Under 

Surface, Above Surface

▪ Balloons, Satellites, Jetpack!

▪ Flight Modes provide a set of helpers to control 

autonomy

▪ Parameter database exposing functionality back 

to users

▪ Dronecode Ecosystem

▪ Open Source BSD-3 License

Autonomy Stack originally developed for Aerial Robotics, 

primarily Multi Rotors, over time extended to support 

Fixed-Wing, VTOL, and Over & Under Surface Vehicles.



Gentle Introduction to 
Top LF Projects

1. Linux

2. Kubernetes

3. pytorch

4. OpenTelemetry

5. Zephyr

6. Argo

7. Hyperledger

8. Node.js

9. Backstage

10. Cloud Foundry

11. Prometheus

12. Cilium

13. Jenkins

14. gRPC

15. Envoy

16. PX4 Drone Autopilot

17. Meshery

18. FINOS

19. Keycloak

20. Crossplane

>13k contributors  

>1,000,000 devices in the air



Great… but, Space Robotics?



Motivation
From Algorithm to Space Deployment

Algorithms
Control  Planning

Estimation …

Radar illumination of the surface from

backshell separation altitudes [2].

Path planning for information gain on

disturbed spacecraft dynamics [3].
Passive relative orbits for spacecraft

inspection tasks [4].



Motivation
From Algorithm to Space Deployment

Algorithms
Control  Planning

Estimation …

Simulation
Matlab, ROS, cFE

Basilisk, …

MIT SPHERES Matlab Simulation

Environment with two robots. [5]

NASA Astrobee simulator, based on

ROS and Gazebo. [6]

Basilisk’s Vizard Unity-based

simulation environment. [7]



Motivation
From Algorithm to Space Deployment

Algorithms
Control  Planning

Estimation …

Simulation
Matlab, ROS, cFE

Basilisk, …

MIT Space Systems Laboratory with

three SPHERES units. [5]

NASA Astrobee granite testbed facility

at NASA Ames. [6]

Three CubeSat’s Hardware prototypes

at CMU’s Robotic Exploration Lab. [8]

Analog Hardware
Ground-testing facilities

Free-flyer platforms



Motivation
From Algorithm to Space Deployment

Algorithms
Control  Planning

Estimation …

Simulation
Matlab, ROS, cFE

Basilisk, …

MIT SPHERES in the Space Station.

[5]

NASA Astrobee robots performing a

formation keeping maneuver. [9]

CubeSats being deployed in LEO orbit. [10]

Analog Hardware
Ground-testing facilities

Free-flyer platforms

Target
Satellite, 

Autonomous Units 



Motivation
Flaws in the State-of-the-art

Drawbacks with current solutions:

1. Hard to replicate testbeds

? ??

Analog Hardware
Ground-testing facilities

Free-flyer platforms



Drawbacks with current solutions:

1. Hard to replicate testbeds

2. Closed-source software

aocs.cpp

ekf.cpp

fsm.cpp

guidance.cpp

Motivation
Flaws in the State-of-the-art Analog Hardware

Ground-testing facilities

Free-flyer platforms



Drawbacks with current solutions:

1. Hard to replicate testbeds

2. Closed-source software

3. Hard to reproduce results

Motivation
Flaws in the State-of-the-art Analog Hardware

Ground-testing facilities

Free-flyer platforms



Drawbacks with current solutions:

1. Hard to replicate testbeds

2. Closed-source software

3. Hard to reproduce results

4. Limited expandibility

Motivation
Flaws in the State-of-the-art Analog Hardware

Ground-testing facilities

Free-flyer platforms



Meet PX4Space and ATMOS
Open-source as a Solution

Low-cost

COTS Components [11]

Open-source Software 

SITL support

Open-source Hardware

Step-by-step Guide



Meet PX4Space and ATMOS
Open-source as a Solution

Analog for multiple Target systems 

and autonomous facilities

Open-source Software 

SITL support

Open-source Hardware

Step-by-step Guide



Meet PX4Space and ATMOS
Open-source as a Solution

… not only microgravity facilities!

Open-source Software 

SITL support

Open-source Hardware

Step-by-step Guide



PX4Space, soon part of PX4-Autopilot
Overview of the Hardware

▪ Three 1.5 L , 300 bar air tanks

▪ Modular actuation plates:

▪ Eight thrusters at 1.7 N (nominal)

▪ Four bidirectional propellers at 1.95 N

▪ Onboard Computer – NVIDIA Jetson Orin NX

▪ Flight Controller: Pixhawk 6X Mini

▪ Payload Capabilities:

▪ Grippers / Manipulators

▪ Academic / Instrual Payloads, CubeSats, …



PX4Space, soon part of PX4-Autopilot
Overview of the Control Architecture

▪ On PX4Space:

▪ Position and Attitude Setpoint

▪ Force and Angular Rate Setpoint

▪ Force and Torque Setpoint

▪ Direct Actuator Control



PX4Space, soon part of PX4-Autopilot
Overview of the Control Architecture

▪ On PX4Space:

▪ Position and Attitude Setpoint

▪ Force and Angular Rate Setpoint

▪ Force and Torque Setpoint

▪ Direct Actuator Control

▪ Onboard Computer:

▪ Advanced Control Schemes (NMPC, …)

▪ Advanced Planning Schemes (TL, Trees, …)

▪ OS and Middlewares (F’, SGL, Space ROS?)

Fault-Tolerant Model Predictive

Control for Spacecraft [12].
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Challenges



How can Linux bridge certifiable

Academic and Industrial development?



What is really important to certify?
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CubeSat (Slides 16-17): https://www.cubesatshop.com/helpful-links/about-cubesats/

Mars Rover – Curiosity (Slide 17): https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-

rover-msl/

Lunar Lander (Slide 17): https://discoverspace.org/artifacts/lunar-module/

https://www.cubesatshop.com/helpful-links/about-cubesats/
https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/
https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/
https://discoverspace.org/artifacts/lunar-module/
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