
ELISA Workshop
Lund, Sweden

May 7-9, 2025
Co-hosted with Volvo Cars

Safe Continuous Deployment (CD)
in the Automotive Industry

Dr. Håkan Sivencrona,
Senior Technical Leader

Volvo Cars

Safe Continuous Deployment (CD) in the
Automotive Industry (With some Linux considerations)

Dr. Håkan Sivencrona, Senior Technical Leader – DevOps,
Volvo Cars

From Seatbelts to Software Control: Why Automotive Safety Needs Rigor from OSS

● In 1975, saving a life in a car crash could be adding a seatbelt. In 1995,
it meant deploying an airbag in milliseconds. Today, in 2025, saving a
life might mean identifying a child on the road, using a neural
network running on a real-time Linux-based system.

● The world of automotive safety has changed dramatically. Hardware
innovations gave us decades of progress. But we’ve reached the
point where the next life saved won’t come from stronger steel or
more airbags. It will come from code - from the quality of the
software that makes split-second decisions in advanced
driver-assistance systems (ADAS) and the software-defined
vehicle (SDVs).

● For those of us in the Linux/Elisa community, i.e., open-source world,
this is our moment of responsibility. The systems we build and
contribute to, must be deterministic, cyber secure, fault-tolerant,
sustainable and maintainable over years. A segmentation fault or
memory leak is no longer a nuisance—it’s a matter of how many lives
we can save.

● Let’s explore how software quality, integrity, and openness can
continue the legacy of automotive safety—and why the Linux/Elisa
community plays a central role in the mission for a safe
Continuous Deployment 3

1975 1985 1996 2005 2015 2025

innovation
S

W

Q
uality

The Automotive Shift
Built in tension between vehicle development culture that needs linearity
and determinism, driving, the project towards its milestones, e.g. A-, B-,
C-samples and the more organic way of doing complex software
development in a POSIX environment

● Traditional V-cycle vs Agile & Software-Defined Vehicles, SDV

● (Updated) Safety Management Systems – SMS (QMS)

● Connected cars enable over-the-air (OTA) updates

● Efficient use of Data from Fleet /Data Driven Development – Accurate
Fleet data needed

● Going from “SOP projects”, i.e., one release to the “Always
releasable”

Component Owner

Testing of Embedded
Software

Software Verification
and Integration

Specification of
Software Safety
Requirements

Software Architectural
Design

Software Unit
VerificationSoftware Unit Design

Technical Safety
Concept

System Item Integration
and Testing

Integrator

Left leg rig
ht

 le
g

Built-in-tension

Stakeholders Require - A Safety Management System - SMS

● Ensure that the organization is performing Safety
activities properly and not sloppy:

○ Adequate organization-specific rules and processes for functional
safety CI/CD

○ Processes to ensure an adequate resolution of identified safety
anomalies CI/CD

○ Safety culture that supports and encourages the effective
achievement of functional safety

○ Competence management system to ensure that the competence
of the involved persons is commensurate with their
responsibilities

○ A quality management system that supports functional safety

○ A strategy for the safety case provision

5

Safety
policies

&
objectiv

es

Safety
mgmt

Safety
assura

nce

Safety
promoti

on

Plan

D
o

Check

A
ct

Linux brings massive benefits…

6

Nice!

Continuously delivering safety cases..., Hakan Sivencrona, Public

Modularity and Customization

● Enabling a highly modular system design. Enabling developers to include only necessary components, reducing attack
surfaces and improving safety assurance.

Open-Source Transparency

● Full access to the source code. Transparency helps verifying the code against safety standards like ISO 26262, ensuring
that known vulnerabilities can be identified and mitigated.

Strong Community and Vendor Support

● Linux benefits from a massive global developer base and commercial support (e.g., Red Hat, Wind River). Communities
contribute timely security patches, safety enhancements, and validated software components tailored for automotive
needs.

Real-Time Capabilities

● Linux can be partially adapted for real-time performance required in safety-related automotive systems, e.g. ADAS
(PREEMPT_RT)

Certification Support and Safety Profiles

● ELISA ☺ - Helps manufacturers adopt Linux while maintaining compliance with generic safety requirements.

But…
Several core properties could pose challenges when used in continuous deployment (CD) for

safety-related applications -> regression

Lack of Determinism in Mainline Linux – Hard real-time (contracts)

● Process scheduling, interrupt handling, and latency can vary —impacting real-time safety requirements, i.e. keeping contracts

Complex and Rapidly Changing Kernel

● The Linux kernel evolves quickly, with many contributors and patches. Keeping a version with a Safety case up to is hard.

Weak Isolation Between Applications

● Traditionally, Linux doesn’t enforce strict partitioning between applications unless you set up containers or hypervisors.

Update Mechanisms Aren’t Designed for Fail-Safe OTA

● A failed update must never jeopardize the driving. CD in automotive thus includes partitioned SW architectures

So, next SEooC

Last year – SEooC – Safety Element out of Context
● Software or hardware developed independently of a

specific system

● Supports the component based argumentation – > safety
case fragments

○ Assume & Guarantee for safety requirements fullfillment ahead if
system design

● Integration of a SEooC in the system showing that
assumed requirements are meeting the required
expectations –

So, next This year

 for every release

This Year – Continuous Deployment Considerations
● Safe Continuous Software Updates

○ Integrating agile software practices like CI/CD while maintaining safety compliance (e.g., ISO
26262) is costly, complex and slow

● Complex Supply Chains & Component (SEooC) Integration
○ Coordinating software and hardware components from many vendors, each with their own

tools and processes, slows development and validation
● Scalability of Validation & Testing

○ The explosion of new features, software variants and configurations makes exhaustive testing
across all vehicle models unmanageable

● Functional Safety in AI and ML, Regulatory Pressure and Evolving
Standards

So, next CI/CD chain for safe deployment

“If your car gets smarter every week, the update better be safe(r) every
time”

“Software Now Runs the Vehicle…”

● CI/CD in Cars ≠ CI/CD in the Cloud or App world

● No “rollbacks at scale” when someone’s on the highway. No chaos
engineering ☺

● Latency, determinism, and fault tolerance are non-negotiable.

● OTA (over-the-air) updates must be safe and securely transferred.

What “Good” Looks Like in Automotive CD…

● End-to-end testing in real-world scenarios (e.g. simulated driving
environments, virtual testing, shadow mode, fleet insight).

● Secure pipelines with cryptographic integrity from build to boot.

● Reproducible builds (reliable)

● Atomic, reversible updates without bricking the vehicle.

● Compliance & traceability (ASIL, ISO 26262, etc.) built into the pipeline.

10Continuously delivering safety cases..., Hakan Sivencrona, Public
So, next The Safety DevOps

The Safety DevOps
● DevOps set of practices combines software development (Dev)

and IT operations (Ops) to shorten the development lifecycle while
delivering high-quality/safety software compliance continuously.

● Enhance collaboration between development and operations
teams to streamline a safe software delivery process including the
fleet and specific vehicles

● Central to DevOps is the automation of repetitive tasks, such
as code testing, integration, and deployment, to improve efficiency,
improve reproducibility => reduced errors

● DevOps emphasizes on frequent code integration and automated
deployments (CI/CD) to ensure rapid and reliable delivery

● DevOps promotes a safety culture where teams work together,
share responsibilities, and focus on a common goal - delivering
safe software faster

● Supports the SMS
11

Continuous Deployment & Feedback (CD)

● What is is..

● An “Automated” pipeline from code to production

● "Zero” human intervention after code is merged

● Speeds up feedback loops and deployment cycles

● But introduces a challenge to go from advanced
projects/new inventions and Proof of Concepts to
“Always Releasable” in the vehicle

2 Design monitor

Dependencies

12

1 – Plan for Ops data as evidence in future assurance cases
2 – Design monitors
3 – Collect data from monitors
4 – Use collected Ops data as evidence in assurance case

3

4

Safety Culture

Tools & Methods

Verification

Challenges for a Safe CD

● End-to-end traceability (knowing dependencies)
● Testing and validation in real-time (Fleet)
● Architectural changes
● Component (sensor) replacement
● Rollbacks and fail-safes
● Balancing compliance with rapid updates
● Providing valuable and correct documentation, e.g.

Safety assurance
● Dependencies between components and their different

states, e.g. monitoring one component and feeding obs
data to development

Product

Generating Safety Case in CI/CD

REBASING

MERGE CONDITIONS

DEV BRANCH

MAIN

?

OPS DATA

SW SaCa
fragments

BALANCE

Reqs

Reqs MAIN is
equipped with
instrumented
code too

Reqs

BUGS

OTA

SaCa

A Modular product structure enabling continuous
deployment should

● Support concrete verification and argumentation
plans several steps ahead together with product
increment for each deployment candidate. Such plans
imply specification of verification criteria and criteria for
valid evidence to be produced, and what method to be
used for each piece of evidence.

● Show how to, several steps ahead in the product
planning, make an efficient combination of
verification methods such that they both are
complementary in each step and that what is produced in
one step is supporting upcoming steps.

● The verification and argumentation structures,
respectively, are closely related to the
requirement structure modularized by means
of a contract structure in four dimensions
(abstraction, aggregation, allocation, and
functional relation).

● The methodology also includes how to apply
general design principles (as for example
separation of complexity and criticality) in the
context of highly automated functionality and
frequent updates.

● Analyse and Identify what is needed in
terms of tool support to generate valid
safety cases for each deployment candidate. Always Releasable!!!

Defining the DevOps, Run-time collected data used
for Design-time (Code)

COLLECTION OF OPERATIONAL DATA

• This is the Ops part, essential to constitute a real DevOps, for Continuous
Deployment.

• Carefully chosen collection of run-time data, is fundamental in creating
lessons learned used in coming versions of design-time updates of the ADS.
The learning-loop from observing the field, is not by (too late) observing
accidents and incidents, rather collecting data identified as creating
evidence in coming versions of the individual safety property.

• Can be done by expressing a triggering condition to collect field data
comparing how well (and hypothetical) a claimed absence of a pedestrian is
consistent with a later observation of the related data volume.

16

Needs from a Safety context
● Support for general and stable safety tactics and patterns – e.g. ASIL B(D) for

certain general failure modes (and also POSIX) but also allocatable by
specific safety requirements

● Development needs – e.g. need to allow fast iterations without regression,
additional merge conditions, re-basing – i.e. Continuous Integration and
Deployment

● Allowing to add new features, i.e. changing the argumentation structure,
architecture (i.e. static/dynamic) not only support for increased performance

● Verification and Validation needs – e.g. efficient and frequent generation of
safety cases, certain activities take long time and must be accounted for.

 Key Components of the CI/CD architecture

1 Core Flow:
● Code (Git/GitLab) → Build

(CMake/Yocto/ARM Toolchains)
→ Test (HIL/ISO 26262 Checks)
→ Deploy (OTA/ECU Flashing)
→ Monitor (ELK/Grafana)

3

Key Automotive Features:
● Hardware-in-Loop (HIL) testing

with CANoe/dSPACE
● ISO 26262/MISRA compliance

via Polyspace/LDRA
● Embedded toolchains

(AUTOSAR, ARM GCC)
● Safety-critical artifact

traceability

2

Infrastructure:

● Hybrid cloud/edge (Kubernetes
+ OpenStack)

● Data versioning (DVC) &
streaming (Kafka)

● Infrastructure-as-Code
(Ansible/Terraform)

4 Compliance:
● End-to-end audit trails
● TÜV-certified static analysis
● Secure OTA updates

(Mender/RAUC)

With courtesy of Rhode Engineering, © Teddy

Project in the Pipeline – Adressing the following…
● Enablers to make Rapid DevOps (special focus on Continuous Deployment) Real
● Methodology: Coordinated planning for a series of upcoming versions (candidates)

■ Product updates and new features.

■ Verification and Validation methods

■ Continuous Assurance Cases (Safety/Quality/Legal)
● Multi-stage Data-driven verification

■ Design for dedicated data-collection

■ Future argumentation structures specifies data needed as evidence
● Modular argumentation structure to enable automatization for CI/CD

■ Enable updatability with limited impact on argumentation – Safety Case

■ Explicitly showing still missing evidence (verification and data to be collected)

Final Thoughts on Linux/ELISA

● Linux introduction into the safety realm requires a
technical and cultural transformation

● Can ELISA become a key enabler of this shift….

● Safe CD is essential for modern vehicles

● How to make Linux play a complementing part in the
marriage for safety? Providing ASIL B(D) possibilities etc

Continuously delivering safety cases..., Hakan Sivencrona, Public

Continuously delivering safety cases..., Hakan Sivencrona, Public

THANK YOU!!!!

