
Paul Albertella, Codethink
Daniel Krippner, ETAS GmbH

Eclipse Trustable Software
Framework (TSF)

9th May 2025

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

 Paul Albertella (@reiterative)

● Consultant at Codethink since 2019
● Certified Functional Safety Practitioner (ISO 26262)
● Developing Codethink’s safety approach since 2020
● Currently applying TSF to internal and customer projects

● Providing technical leadership for TSF project
● Working in public since February 2025
● Approved as an Eclipse Foundation project April 2025
● Currently migrating project work into Eclipse

● Contributor to ELISA project since 2019
● Chair of Open Source Engineering Process (OSEP) group

2

Introduction

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

What?
● A theoretical model for reasoning about software and trust
● A methodology for managing evidence to support claims about this
● A framework for evaluating risk in continuous delivery of critical software

Why?
● Software in critical products is increasingly complex and rapidly changing
● Open source software is ubiquitous and deeply-established in most domains
● Existing safety standards were not developed with either of these in mind
● Safety and security are not the only risk factors for a software project

For more details read: Building Open Safety Standards with the Eclipse Trustable Software Project1

What is TSF and why is it needed?

3

https://creativecommons.org/licenses/by-sa/4.0/
https://newsroom.eclipse.org/eclipse-newsletter/2025/april/building-open-safety-standards-eclipse-trustable-software-project

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● TSF is used by Codethink to manage the safety case for CTRL OS

○ A Linux-based operating system for use in safety-critical and mixed-criticality
systems up to SIL 3 / ASIL D, developed using TSF and RAFIA1

● Codethink published a baseline safety case assessment by exida this week:

○ https://www.codethink.co.uk/news/trustable-software.html

“The assessment of the process framework as applied to CTRL OS has
shown that the relevant safety requirements of IEC 61508 at SIL 3 are met
and a process compliance argument is complete with this baseline safety

case assessment.”

4

Is it suitable for safety?

1 RAFIA: https://codethinklabs.gitlab.io/trustable/trustable/applications/rafia/index.html

https://creativecommons.org/licenses/by-sa/4.0/
https://www.codethink.co.uk/news/trustable-software.html
https://codethinklabs.gitlab.io/trustable/trustable/applications/rafia/index.html

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Certification

Safety

 Features

Suppliers

Security

Customers

SOP

FuSa

5

Why Trustable?

● Safety and security are the key
risk factors, but others exist

● Often interconnected, and/or
balanced against each other

● Consumers, contributors and
stakeholders have different
risk factors and priorities

● Need evidence to make
informed decisions about risk

Trustable, rather than
trusted or trustworthy

Commercial
Risks

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 6

A changing risk landscape

We are here

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 7

A complex risk landscape

SoC

firmware

drivers

other silicon

firmware

drivers

boot loader

kernel

initoperating system

middleware + libraries

applications

toolchain

IDE

bought-in components

FOSS components

CI/CD infrastructure

deployment infrastructure SOTA

operating system

SOTA

Development Environment

SoC

firmware

drivers

other silicon

firmware

drivers

boot loader

kernel

initoperating system

middleware + libraries

applications

SOTA

machine
learning/AI

boot loader

Multi-Domain Target Environment

off-board applications

hypervisor

in-house IT cloud

certified tools

uncertified tools

Single Domain Target Environment

SIL/ASIL certified Not certified Who knows?

exploits

bugs

design

faults

malware

bugs

exploitsbugs

bugs

malware

process

failures

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Need consensus about the factors to consider
when evaluating risk for critical software

● Use this to drive a Trustable Score — like a
‘credit score’ for software

● Enable software projects to organise and evaluate
evidence relating to these factors

● Use alongside existing standards to show that the
measures and objectives are equivalent

● Develop as a basis for cross-project comparison
and improvement

8

A common frame of reference
GOOD

PO
O

R

FAIR
VERY GOOD

EXCELLEN
T30

0
57

9

580689
670739

740799

800850

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

What is the TSF?

9

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TSF is a framework, providing objectives, a model and a methodology.

● objectives define what is important, or what we are trying to accomplish

● a model is a simplified description of a more complex system or idea,
focusing on specific elements or relationships

● a methodology is a system of methods used for a particular activity, which
may use models

● a framework provides practical structures and tools to help apply these
methods, while allowing flexibility about how objectives are achieved

What do we mean by a framework?

10

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

What evidence is needed for software to be considered ‘trustable’?

● Common set of ‘baseline’ objectives, to be extended with project-specific ones
● Based on established best practices and past experience
● Intended to be extended and refined over time - input very welcome!

Trustable objectives

11

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Theoretical model for reasoning about software, based on:

● the behaviours or properties we expect from it
● the claims we make about it
● the evidence we provide to support these claims

Composed of Statements and Artifacts.

● Statements express a Request, or a Claim, or both
● Artifacts support a Claim or qualify a Request
● Evidence is a Claim supported by an Artifact

Linked Statements form a Trustable Graph, which
stores and organise project metadata.

Trustable model

12

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Apply in-context - as much as
appropriate for the project,
extending for components

● Map your claims and evidence
to the Trustable Objectives

● Document project-specific
objectives and Expectations for
your software

● Link to requirements or evidence
managed in other systems or contexts

● Map Trustable and project-specific objectives and evidence to the corresponding
requirements defined by standards

TSF methodology

13

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Trustable Objectives

14

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

???

1. Provenance
We know where its inputs come from, who is responsible,
and our confidence in them

2. Construction
We can build it - reproducibly - from source

3. Changes
We can upgrade it and it will not break or regress

4. Expectations
We know what it must do, and what it must not do

5. Results
We show that it does what it must do, and does not do
what it must not do

6. Confidence
We measure and declare our confidence that it satisfies
its other claims

We can offer software as Trustable if we can provide evidence to support
all of these claims…

Trustable Objectives

15

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

A common set of Statements maintained by the TSF, describing the evidence needed to
determine whether a given iteration of a software project (“XYZ”) is Trustable

● The Tenets (TT-xxx) describe a set of high level goals for trustability
● The Assertions (TA-xxx) break these Tenets down into more specific objectives

Tenets and Assertions

16

Tenets

Assertions

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Understand all of your external dependencies, including
tools and toolchain components, and why — or to what
extent — you can trust them.

● Supply Chain - Mirror all your external dependencies
using infrastructure that you control, to avoid them
changing or disappearing unexpectedly.

● Inputs - Assess (and regularly reassess) all of your
dependencies, to identify potential risks and issues,
including those identified by their providers.

Provenance

17

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Understand and control how your software is constructed,
and the tools and dependencies that are used.

● Releases - Releases of your software should be both
repeatable and reproducible, to confirm that you have
control over all of the inputs.

● Tests - Apply the same principles when constructing
tests and the environments in which you run them.

● Iterations - Confirm this for every iteration of your
software, to avoid surprises on release day!

Construction

18

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Control and verify every change to your software, its
dependencies and its toolchain(s), to prevent regressions
— but also update tools and dependencies regularly!

● Fixes - Analyse and triage bugs identified by your
project, or by external providers, and apply fixes.

● Updates - Apply the same controls to all updates,
and coordinate changes to tools or shared
dependencies to avoid integration problems later.

Changes

19

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Document what your software is expected to do, how this
is verified and how issues are detected and mitigated.

● Behaviours - What it is supposed to do (and not do).
● Misbehaviours - How this can go wrong, and how

to prevent this or deal with the consequences.
● Indicators - What is monitored to detect and

proactively respond to potential misbehaviours.
● Constraints - Limitations, restrictions or assumptions

about how the software is to be used.

Expectations

20

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Evidence that your software satisfies its expectations, and
how you ensure that this continues to be the case.

● Data - What and how data is collected during tests,
and from deployed software, to verify its Behaviour
and detect or identify Misbehaviours.

● Validation - Confirming that tests and mitigations
detect and respond to Misbehaviours as intended.

● Analysis - Examine data to identify patterns or
anomalies, which may indicate Misbehaviours.

Results

21

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

How you measure your confidence in your software, and
the processes that you use to construct and verify it.

● Methodologies - Techniques or strategies used by
contributors for other objectives, and how you verify
that these have been applied correctly.

● Confidence - How you measure and record
confidence in your software, and how this data is
used to inform activities and priorities.

Confidence

22

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Building out from the objectives

Tenets

Assertions

Your Statements go here!

23

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Building out up from the objectives

Tenets

Assertions

Your Statements go here!

24

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Trustable Model

25

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● TSF is domain-agnostic and evidence-based
○ Use generic terminology to establish fundamental concepts
○ Enable all users make their own judgement about evidence

● Express complex ideas using simple elements
○ Small set of ‘building block’ elements and rules
○ Language rules simple enough to enforce
○ Structure rules that can be verified mathematically

● Structure for recording, collecting and deriving metrics
○ Confidence scores recorded by contributors
○ Data-driven scores from collected test results and monitoring data
○ Metrics derived from scores to feed into risk evaluation and project management

Why do we need a model?

26

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Fundamental elements of the TSF model

● Statements define some aspect of the software

○ A single sentence that can be True or False
○ Used to express a Request, or a Claim, or both
○ Linked to other Statements to show dependencies

● Artifacts support a Claim or qualify a Request

○ Qualifying artifacts provide more detailed information
about a Request

○ Evidence artifacts provide support for a Claim

Statements and Artifacts

27

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

SMA-03

Project tracks known security advisories for dependencies.

Supported Requests:

● TA-A_02

Supporting Items:

● SMA-04

References:

None

28

Making a Statement (example)

https://creativecommons.org/licenses/by-sa/4.0/
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/TA.html#ta-a_02
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/SMA.html#sma-04

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Classifications characterise the role of Statements in
a given context:

● Request only: Expectation

● Claim and Request: Assertion

● Claim only: Premise

Contexts reflects boundaries or abstraction levels:

● A Premise in one context may be an Expectation in
another (e.g. the AOU Statements in the example)

● An Expectation for a subsystem may be treated as an
Assertion at the system level

Classifying Statements

29

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Statements and Artifacts

● Assertions may be qualified by an Artifact

● A Premise with an Artifact is Evidence

○ The Statement describes the Claim
○ The Artifact must support this Claim

● A Premise without an Artifact is an Assumption

○ Gap: evidence not yet provided by the project
○ Dependency: evidence to be provided in the

context of a system using the software

30

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

SMA-01

The safety-monitor project CI periodically executes the integration test
suite, and failures in these runs are investigated by contributors; resolution
of the identified causes of these failures is tracked by GitLab issues.

Supported Requests:

● TA-A_11

Supporting Items:

● SMA-EVIDENCE-001
● SMA-EVIDENCE-002

References:

None

31

Linking to Evidence (example)

https://creativecommons.org/licenses/by-sa/4.0/
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/TA.html#ta-a_11

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● An Evidence Statement makes a Claim
about an Artifact with respect to a Request
made by another Statement

● Artifacts must always relate to the software
itself, or to the results of software
engineering processes applied as part of
its development

32

Evidence means Artifacts!

Evidence

Artifact

Assertion

claim

engineering
processes

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

There are broad types of evidence artifact:

● Inputs: Inputs to a construction or verification
process, which may include document files for
processes performed by a human

● Results: Outputs of a construction or
verification process for this iteration, which
may include generated documents or reports

● Data: Test data collected for previous
iterations and field data from monitored
system deployments of the software

33

Types of Evidence

Build
inputs Test inputs Document

inputs

Docs &
reports

Build
Results Test Results

Test dataField dataDeployed
System

Build data

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Designed to support scoring of the Claims captured in Statements
○ Scores are only assigned to Evidence!
○ Scores come in two categories

● Confidence scores are committed in the graph by a human

○ Result of an assessment of the evidence by a Subject Matter Expert

● Validator scores are calculated by an automated process, based on:

○ Result artifacts produced during construction and verification for this iteration
○ Data artifacts collected for previous iterations or from deployments

● This part of TSF is still being developed

○ Planned features include weights, to define the relative importance of
contributing Assertions and Evidence in the graph

34

Evaluating Evidence

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TSF Methodology

35

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Foundations

● Everything-as-code
○ Store inputs to construction and verification processes rather than their results
○ Store as plain text where possible and manage everything under version control

● Coordinated change and configuration management using git
○ Store inputs in git repositories, managed by a single ‘forge’ (e.g. GitLab, GitHub)
○ Maintain a mainline branch as the “source of truth” for each repository
○ Apply controls at the point of merge (incorporation of changes from a branch)
○ Manage the versions of inputs from other repositories using SHA1 or tag

● Pre-merge verification and approval
○ A set of automated tests must succeed for the branch before it can be merged
○ The set of automated tests is configured and managed as part of the repository
○ Merges may also require review or approval by designated individuals or groups

361 Value produced by a Secure Hash Algorithm

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Pre-merge verification
○ Changes must be built, tested and reviewed before merge is allowed

● Landing changes in a shared repository
○ Specifically: the mainline branch for that repository

Foundations: Software as a production line

37

Repository

TestBuild MergeChange

Source Build
results

Test
results

Feedback

Evaluate

ReviewerDeveloper

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Changes are not processed in isolation
○ Other developers are working with the same source
○ Changes may depend upon or conflict with each other

Foundations: Interacting changes

38

Other
changes

Repository

TestBuild MergeChange

Source Build
results

Test
results

Feedback

Evaluate

ReviewerOther developers Other reviewersDeveloper

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Foundations: System integration

RepositoryRepositoryOther
repositories

Other
changes

Other teams

Other production lines

Other
changes

Repository

TestBuild MergeChange

Source Build
results

Test
results

Feedback

Developer

Evaluate

Reviewer Other reviewersOther developers

System

39

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Input evidence

 Input artifacts (stored in git)

Output
artifacts

(from CI jobs)

Methodology

Document
source files

Tests & test
criteria

Source code &
configs

Stakeholder

Contributor

Binaries

Documents

Results
Confidence

scores

Validators

Requirements

 Input evidence
is scored by

subject matter
experts

3

Assertions are
derived from these

and mapped to
Evidence

2

 Key stakeholder
requirements

are captured as
Expectations

11

All changes are managed by a CI process4

 TSF Graphs
are stored in
git, read and

updated by CI

5

 Result
Evidence is

scored in CI by
Validators

6

TSF provides continuous impact assessment feedback7

40

Reports

Expectations

Assertions

Evidence

Subject
Matter Expert

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 41

Using scoring to guide activities and priorities
● Produce Trustable

report for main and
development branches

● Track progress towards
objectives and assess
impacts of a change

● Integrate with
automated testing
using validators to see
and link to ‘live’ results

● Use confidence scores
to give feedback on
gaps or work required

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Command line tools and libraries written in Python to:

○ Manage a stored representation of a TSF Graph in a git repository

○ Publish documentation and reports, and plot visualisations of a TSF graph

○ Define a plug-in ‘validator’ interface for automated evidence scoring

○ Calculate metrics based on evidence scores and weights

● Under very active development!

○ Was originally based on Doorstop1, but now a standalone tool (trudag)

○ Retains legacy support for Doorstop as a data format

○ Included as part of the main TSF project

○ Currently extending to add support for remote graphs and evidence

42

TSF Tooling

1 https://doorstop.readthedocs.io

https://creativecommons.org/licenses/by-sa/4.0/
https://doorstop.readthedocs.io
https://doorstop.readthedocs.io

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Feedback on using TSF

43

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Using TSF for uProtocol

44

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Summary and next steps

45

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● A new approach is needed to manage risk in critical systems using software
that is complex or non-deterministic, whether proprietary or open source

● The Trustable Objectives define a common set of factors that should be
considered when evaluating risk for any software project

● The Trustable Software Framework enables projects to:

○ Document their approach to satisfying the Trustable Objectives
○ Define project-specific objectives alongside these
○ Collect, organise and evaluate evidence to support their objectives

● The Eclipse Trustable Software Framework project has been established to
continue development of this approach in the open

46

Summary

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

● Complete migration of documentation and tooling into Eclipse Foundation

● Provide more examples of how TSF can be applied

● Extend tooling to support references to remote graphs and evidence

● Extend the scoring approach to support weights

● Start building a community to shape and contribute to the project

● Support other projects applying TSF in the open and use their feedback to
drive improvements and add new use cases

47

Future plans

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Introductory talks and article

● FOSDEM: https://www.youtube.com/watch?v=2TS5EENC6Ms
● SDV Community Day: https://www.youtube.com/watch?v=Iyp3b2e35iY
● Building Open Safety Standards with the Eclipse Trustable Software Project

TSF project home in the Eclipse Foundation

● https://projects.eclipse.org/projects/technology.tsf

TSF project documentation (temporary home on gitlab.com)

● https://codethinklabs.gitlab.io/trustable/trustable/

48

Where to find more information

https://creativecommons.org/licenses/by-sa/4.0/
https://www.youtube.com/watch?v=2TS5EENC6Ms
https://www.youtube.com/watch?v=Iyp3b2e35iY
https://newsroom.eclipse.org/eclipse-newsletter/2025/april/building-open-safety-standards-eclipse-trustable-software-project
https://projects.eclipse.org/projects/technology.tsf
https://codethinklabs.gitlab.io/trustable/trustable/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Backup slides

49

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TSF and S-CORE

Trustable Software Framework S-CORE process

Mainly for existing projects, including FLOSS Mainly for new development projects

For adopters of FLOSS for safety-relevant systems For S-CORE stack developers + integrators

An argument with measurements, not a process A standards-compliant safety process

Aiming to be a new fully open standard Aiming to develop standards-compliant FLOSS

Ongoing safety assessments by exida Ongoing safety assessments by exida

Tooling is doorstop + mkdocs Tooling is sphinx-needs + sphinx

May affect EFFSP + badge programme?

50

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 51

RAFIA: Risk Analysis, Fault Induction and Automation

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 52

RAFIA: Automated testing

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 53

RAFIA: Testing quadrant

https://creativecommons.org/licenses/by-sa/4.0/

