ELISA \WORKSHOP

Safety Applications

Eclipse Trustable Software
Framework (TSF)

Paul Albertella, Codethink
Daniel Krippner, ETAS GmbH

9th May 2025

https://creativecommons.org/licenses/by-sa/4.0/

Introduction @

Q Paul Albertella (@reiterative)

Consultant at Codethink since 2019 ®
Certified Functional Safety Practitioner (ISO 26262) @@_@Hlm‘%
Developing Codethink’s safety approach since 2020

Currently applying TSF to internal and customer projects

Providing technical leadership for TSF project

Working in public since February 2025 (E C L I p S E@

Approved as an Eclipse Foundation project April 2025
Currently migrating project work into Eclipse FOUNDATION

Enabling Linux in
Safety Applications

Contributor to ELISA project since 2019 ELISA
e Chair of Open Source Engineering Process (OSEP) group e

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

What is TSF and why is it needed? ()

What?
e A theoretical model for reasoning about software and trust
e A methodology for managing evidence to support claims about this
e A framework for evaluating risk in continuous delivery of critical software

Why?
e Software in critical products is increasingly complex and rapidly changing
e Open source software is ubiquitous and deeply-established in most domains
e Existing safety standards were not developed with either of these in mind
e Safety and security are not the only risk factors for a software project

For more details read: Building Open Safety Standards with the Eclipse Trustable Software Project’

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/
https://newsroom.eclipse.org/eclipse-newsletter/2025/april/building-open-safety-standards-eclipse-trustable-software-project

Is it suitable for safety? @

e TSF is used by Codethink to manage the safety case for CTRL OS

o A Linux-based operating system for use in safety-critical and mixed-criticality
systems up to SIL 3/ ASIL D, developed using TSF and RAFIA

e Codethink published a baseline safety case assessment by exida this week:

o https://www.codethink.co.uk/news/trustable-software.html

“The assessment of the process framework as applied to CTRL OS has
shown that the relevant safety requirements of IEC 61508 at SIL 3 are met
and a process compliance argument is complete with this baseline safety

case assessment.”

" RAFIA: https://codethinklabs.gitlab.io/trustable/trustable/applications/rafia/index.html

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/
https://www.codethink.co.uk/news/trustable-software.html
https://codethinklabs.gitlab.io/trustable/trustable/applications/rafia/index.html

Why Trustable?

e Safety and security are the key
risk factors, but others exist

e Often interconnected, and/or
balanced against each other merClal

e Consumers, contributors and
stakeholders have different
risk factors and priorities

e Need evidence to make
informed decisions about risk

Trustable, rather than
trusted or trustworthy

https://creativecommons.org/licenses/by-sa/4.0/

A changing risk landscape

A
@/ We are here

100Mloc
—~
9
C
) 10Mloc
n
oT0)
O
— 1Mloc
) non-deterministic hardware and
N unspecificable software
v 10Kloc . o and .
@ complex interactions (emergent behaviour)
% on-deterministic
£ sitioc ardware and
@ nspecifiable
O software
@)
O 1Kloc
microcontroller single core multi-core several multi-core many complex ECUs
miCl’Opl’OCESSOI’ microprocessor microprocessors

Hardware complexity
Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

A complex risk landscape

exploits

bugs

4
%

Multi-Domain

o ¥ Single D rget Environment =
FOSS components Lcations operating system | init
bought-in components SOTA | middleware + librarie il
certified tools operating system | init \Q@ boot loader
uncertified tools kernel hypervisor
IDE h boot loader boot loader
toolchain / ﬁ drivers drivers drivers
operating system $®‘e/rﬁ§\/re firmware firmware
in-house IT cloud <<0®\ other silicon SoC other silicon 0(6

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

SIL/ASIL certified

N>

Not certifiedW . Who knows?

https://creativecommons.org/licenses/by-sa/4.0/

A common frame of reference

e Need consensus about the factors to consider
when evaluating risk for critical software

e Use this to drive a Trustable Score — like a
‘credit score’ for software

e Enable software projects to organise and evaluate
evidence relating to these factors

e Use alongside existing standards to show that the
measures and objectives are equivalent

e Develop as a basis for cross-project comparison
and improvement

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Trustable Compliance Report

Item status guide

Each item in a Trustable Graph is scored with a number between 0
and 1. The score represents aggregated organizational confidence in
a given Statement, with larger numbers corresponding to higher
confidence. Scores in the report are indicated by both a numerical
score and the colormap below:

oo0 T o0
The status of an item and its links also affect the score.

Unreviewed items are indicated by a strikethrough. The score of
unreviewed items is always set to zero.

https://creativecommons.org/licenses/by-sa/4.0/

What is the TSF?

Copyright Codethink Ltd | Licensed

https://creativecommons.org/licenses/by-sa/4.0/

What do we mean by a framework? ®

TSF is a framework, providing objectives, a model and a methodology.

objectives define what is important, or what we are trying to accomplish

a model is a simplified description of a more complex system or idea,
focusing on specific elements or relationships

a methodology is a system of methods used for a particular activity, which
may use models

a framework provides practical structures and tools to help apply these
methods, while allowing flexibility about how objectives are achieved

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 1 0

https://creativecommons.org/licenses/by-sa/4.0/

Trustable objectives

What evidence is needed for software to be considered ‘trustable’?
Common set of ‘baseline’ objectives, to be extended with project-specific ones

Based on established best practices and past experience
Intended to be extended and refined over time - input very welcome!

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYZ
are provided with

known provenance.

TA-SUPPLY_CHAIN:
All sources for
XYZ and tools are
mirrored in our
controlled environment

TT-CONSTRUCTION:
Tools are provided
to build XYZ from
trusted sources
(also provided)

with full reproducibility.

TT-CHANGES: XYZ
is actively maintained,
with regular updates

to dependencies,

and changes are

verified to prevent
regressions.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected

to do, and what

it must not do,

and how this is
verified.

TA-RELEASES: Construction

of XYZ releases
is fully repeatable
and the results
are fully reproducible,
with any exceptions
documented and justified.

TA-FIXES: Known
bugs or misbehaviours
are analysed and
triaged, and critical
fixes or mitigations

are implemented

TA-BEHAVIOURS: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

or applied.

TA-MISBEHAVIOURS:

TA-TESTS: All tests

TA-UPDATES: XYZ

Prohibited misbehaviours

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
it is supposed to
do, and does not
do what it must

not do.

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

TA-DATA: Data is

TA-CONSTRAINTS:
Constraints on adaptation
and deployment of
XYZ are specified.

objectives.

collected from tests,

and from monitoring
of deployed software,
according to specified

TA-METHODOLOGIES:
Manual methodologies
applied for XYZ
by contributors,
and their results,
are managed according
to specified objectives.

TA-INDICATORS: Advance
warning indicators
for misbehaviours

are identified,

TA-VALIDATION: All
specified tests
are executed repeatedly,
under defined conditions

TA-ANALYSIS: Collected

data from tests
and monitoring of
deployed software

TA-CONFIDENCE: Confidence
in XYZ is measured
based on results
of analysis

TA-ITERATIONS: All
components, configurations for XYZ are identified,
is analysed according

in controlled environments,

TA-INPUTS: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential

risks and issues

d its
constructed iterations

for XYz, a
build and test environments,
are constructed
from controlled/mirrored
sources and are
reproducible, with
any exceptions documented

of XYZ include source
code, build instructions,
tests, results and

and tools are updated
under specified
change and configuration
1t controls.

and mitigations
are specified, verified
and validated based

on analysis.

and monitoring mechanisms
are specified, verified
and validated based

according to specified

to specified objectives.

objectives.

on analysis.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

11

https://creativecommons.org/licenses/by-sa/4.0/

Trustable model @

Theoretical model for reasoning about software, based on:

e the behaviours or properties we expect from it
e the claims we make about it

e the evidence we provide to support these claims

Expectation

. Qualification)
Assertion ¢ V/ Yeooocoooo-2 Artifact

Composed of Statements and Artifacts.

e Statements express a Request, or a Claim, or both
e Artifacts support a Claim or qualify a Request
e Evidence is a Claim supported by an Artifact

Evidence Assumption

Reference Validation

Linked Statements form a Trustable Graph, which %
stores and organise project metadata. @ Artitacts @

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 1 2

https://creativecommons.org/licenses/by-sa/4.0/

TSF methodology

e Apply in-context - as much as
appropriate for the project,
extending for components

e Map your claims and evidence
to the Trustable Objectives

e Document project-specific
objectives and Expectations for
your software

e Link to requirements or evidence
managed in other systems or contexts

e Map Trustable and project-specific objectives and evidence to the corresponding
requirements defined by standards

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

13

https://creativecommons.org/licenses/by-sa/4.0/

Trustable Objectives

14

https://creativecommons.org/licenses/by-sa/4.0/

Trustable Obijectives ®

We can offer software as Trustable if we can provide evidence to support
all of these claims...

1. Provenance 4. Expectations
We know where its inputs come from, who is responsible, We know what it must do, and what it must not do
and our confidence in them
_ 5. Results
2- Constructlon We show that it does what it must do, and does not do
We can build it - reproducibly - from source what it must not do

6. Confidence

We measure and declare our confidence that it satisfies
its other claims

3. Changes

We can upgrade it and it will not break or regress

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 1 5

https://creativecommons.org/licenses/by-sa/4.0/

Tenets and Assertions
Tenets R

XYZ is Trustable.

W N

TT-EXPECTATIONS:
% % TT-CHANGES: XYZ Al TT-RESULTS: Evidence
TT-PROVENANCE: All TT-CONSTRUCTION: is actively maintained, Documentation is is provided to demonstrate TT-CONFIDENCE: Confidence
source code (and Tools are provided with regular updates provided, specifying that XYZ does what in XYZ is measured
attestations for to build XYZ from todependancies, what XYZ is expected iissupposedito by analvsing:actual
claims) for XYz trusted sources and cphanges are' todo, and what do, ang%ues not pe)ll'formgncegin tests
e, o et s
regressions. verified. not do.

TA-RELEASES: Construction
of XYZ releases
is fully repeatable
and the results
are fully reproducible,
with any exceptions
documented and justified.

TA-FIXES: Known
bugs or misbehaviours
are analysed and
triaged, and critical
fixes or mitigations
are implemented

or applied.

TA-METHODOLOGIES:
Manual methodologies
applied for XYZ
by contributors,
and their results,
are managed according
to specified objectives.

TA-BEHAVIOURS: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

TA-DATA: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-SUPPLY_CHAIN:
All sources for
XYZ and tools are
mirrored in our
controlled environment

TA-CONSTRAINTS:
Constraints on adaptation
and deployment of
XYZ are specified.

TA-TESTS: All tests 3 TA-INDICATORS: Advance =
TA-INPUTS: Components for XYZ, and its TA-ITERATIONS: All TA-UPDATES: XYZ o JPMBBEHAVIOUESS, warning indicators TadaLbAT '82‘('5”\" TA-ANALYSIS: Collected
and tools used to build and test environments, constructed iterations components, configurations for XYZ are identified for misbehaviours - exgcuted repeatedi data from tests TA-CONFIDENCE: Confidence
construct and verify are constructed of XYZ include source and tools are updated and mitigations are identified, under defined cgndluor{% and monitoring of in XYZ is measured
XYZ are assessed, from controlled/mirrored code, build instructions, under specified are s emfie%t verified and monitoring mechanisms in controlled environments deployed software based on results
to identify potential sources and are tests, results and change and configuration and Salidatea based are specified, verified according to specified. is analysed according of analysis
risks and issues reproducible, with attestations. management controls. I and validated based b g P to specified objectives.
any exceptions documented onanalysis. on analysis. objectives.

Assertions
A common set of Statements maintained by the TSF, describing the evidence needed to
determine whether a given iteration of a software project (“XYZ”) is Trustable

e The Tenets (TT-xxx) describe a set of high level goals for trustability
e The Assertions (TA-xxx) break these Tenets down into more specific objectives

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Provenance

Understand all of your external dependencies, including
tools and toolchain components, and why — or to what
extent — you can trust them.

e Supply Chain - Mirror all your external dependencies
using infrastructure that you control, to avoid them
changing or disappearing unexpectedly.

e Inputs - Assess (and regularly reassess) all of your
dependencies, to identify potential risks and issues,
including those identified by their providers.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

\ @

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYZ
are provided with
known provenance.

TA-SUPPLY_CHAIN:
All sources for
XYZ and tools are
mirrored in our
controlled environment

TA-INPUTS: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

17

https://creativecommons.org/licenses/by-sa/4.0/

Construction

Understand and control how your software is constructed,
and the tools and dependencies that are used.

e Releases - Releases of your software should be both
repeatable and reproducible, to confirm that you have
control over all of the inputs.

e Tests - Apply the same principles when constructing
tests and the environments in which you run them.

e [terations - Confirm this for every iteration of your
software, to avoid surprises on release day!

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TT-CONSTRUCTION:
Is are provid

00| ide
to build XYZ from
trusted sources
(also provided)
with full reproducibility.

/

TA-RELEASES: Construction
of XYZ releases
is fully repeatable
and the results
are fully reproducible,
with an ions
documented and justified.

exceptiol

A
TA-TESTS: All tests
for XYZ, and its
|d and test environments,
are constructed
om controlled/mirrored
sources and are
reproducible, with

1 exceptions documented

TA-ITERATIONS: All
constructed iterations
of XYZ include source

code, build instructions,
tests, results and
attestations.

©

\

18

https://creativecommons.org/licenses/by-sa/4.0/

Changes

Control and verify every change to your software, its
dependencies and its toolchain(s), to prevent regressions
— but also update tools and dependencies regularly!

e Fixes - Analyse and triage bugs identified by your
project, or by external providers, and apply fixes.

e Updates - Apply the same controls to all updates,
and coordinate changes to tools or shared
dependencies to avoid integration problems later.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

©

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

Z

TT-CHANGES: XYZ
is actively maintained,
with regular updates
to dependencies,
and changes are
verified to prevent
regressions.

/

TA-FIXES: Known
bugs or misbehaviours
are analysed and
triaged, and critical
fixes or mitigations
are implemented

or applied.

TA-UPDATES: XYZ
components, configurations
and tools are updated
under specified
change and configuration
management controls.

19

https://creativecommons.org/licenses/by-sa/4.0/

Expectations @

TRUSTABLE-SOFTWARE:
This release of

Document what your software is expected to do, how this \

is verified and how issues are detected and mitigated. Do

and how this is

e Behaviours - What it is supposed to do (and not do).
e Misbehaviours - How this can go wrong, and how N

or required behaviours
for XYZ are identified, Constraints on adaptation

specified, verified and deployment of

to prevent this or deal with the consequences. A e ot
e Indicators - What is monitored to detect and

TA-MISBEHAVIOURS: Fietmiirs
Prohibited misbehaviours ‘;Voir:,:ir;%:;",g&gg::
for XYZ are identified,

proactively respond to potential misbehaviours. PSS | | et
e Constraints - Limitations, restrictions or assumptions
about how the software is to be used.

onanalysis. on analysis.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 20

https://creativecommons.org/licenses/by-sa/4.0/

Results

Evidence that your software satisfies its expectations, and
how you ensure that this continues to be the case.

e Data - What and how data is collected during tests,
and from deployed software, to verify its Behaviour
and detect or identify Misbehaviours.

e Validation - Confirming that tests and mitigations
detect and respond to Misbehaviours as intended.

e Analysis - Examine data to identify patterns or
anomalies, which may indicate Misbehaviours.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

is provided to demonstrate

TT-RESULTS: Evidence

that XYZ does what
itis supposed to
do, and does not
do what it must
not do.

\

TA-DATA: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-VALIDATION: All

are executed repeatedly,
under defined conditions
in controlled environments,
according to specified

v

specified tests

objectives.

TA-ANALYSIS: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

https://creativecommons.org/licenses/by-sa/4.0/

Confidence

How you measure your confidence in your software, and
the processes that you use to construct and verify it.

e Methodologies - Techniques or strategies used by
contributors for other objectives, and how you verify
that these have been applied correctly.

e Confidence - How you measure and record
confidence in your software, and how this data is
used to inform activities and priorities.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

©

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

TA-METHODOLOGIES:
Manual methodologies
applied for XYZ
by contributors,
and their results,
are managed according
to specified objectives.

TA-CONFIDENCE: Confidence
in XYZ is measured
based on results
of analysis

22

https://creativecommons.org/licenses/by-sa/4.0/

Building out from the objectives

TRUSTABLE-SOFTWARE:

T This release of
el BB XYZ is Trustable.

TT-EXPECTATIONS:
% 8 TT-CHANGES: XYZ R TT-RESULTS: Evidence

Tz'gﬁggigéy(cai é\" %gg':fgkgﬁhoez‘ is actively maintained, ?:\;g?de’;taencoifr;riﬁ is provided to demonstrate TT-CONFIDENCE: Confidence

attestations for to build x?(z from with regular updates mrl’hat XYz 'is gxpe:te% that XYZ does what inXYZlIs vpeasured

claims) for XYZ trusted sources to dependencies, to do, and what it is supposed to by analysing actual

are provided with (also provided) anvd changes are it mu‘st not do, do, and d_oes not perfol_'mance In .‘85(5
known provenance. with full reproducibility. venrf;eg?et:s%rr('e;/ent and how this s do V‘::::étom"m and in production.
i verified. '

TA-RELEASES: Construction
of XYZ releases
is fully repeatable
and the results

TA-FIXES: Known
bugs or misbehaviours
are analysed and
triaged, and critical

TA-METHODOLOGIES:
Manual methodologies
applied for XYZ
by contributors,

TA-DATA: Data is
collected from tests,
and from monitoring

TA-BEHAVIOURS: Expected
or required behaviours
for XYZ are identified,

TA-SUPPLY_CHAIN:
All sources for
XYZ and tools are

TA-CONSTRAINTS:
Constraints on adaptation

ified, verified and deployment of of deployed software,
mirrored in our are fully reproducible, fixes or mitigations specit ployme : 4 and their results,

4 A S # and validated based XYZ are specified. according to specified .
controlled environment with any exceptions are implemented on analysis. objectives. are managed according

documented and justified. or applied. to specified objectives.

TA-TESTS: All tests A TA-INDICATORS: Advance =
TA-INPUTS: Components for XYZ, and its TA-ITERATIONS: Al TA-UPDATES: XYZ o JPMBBEHAVIOUESS, warning indicators TAYALIDATION: Al TA-ANALYSIS: Collected
and tools used to build and test environments, constructed iterations components, configurations for XYZ are identified for misbehaviours are exgcuted repeatedi data from tests TA-CONFIDENCE: Confidence
construct and verify are constructed of XYZ include source and tools are updated and mitigations are identified, under defined cgnditlogé and monitoring of in XYZ is measured
XYZ are assessed, from controlled/mirrored code, build instructions, under specified are's ecifie%! verified and monitoring mechanisms in controlled environments, deployed software based on results
to identify potential sources and are tests, results and change and configuration and salidatea based are specified, verified according to specified is analysed according of analysis
risks and issues reproducible, with attestations. management controls. on‘analvsis and validated based ob %cﬂveps to specified objectives.
any exceptions documented ys's- on analysis.) &

Assertions

Your Statements go here!

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Building et up from the objectives

Assertions

Your Statements go here!

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests

for XYZ, and its
build and test environments,
are constructed
from controlled/mirrored
sources and are
reproducible, with

TA-A_05: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

any exceptions documented

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,

and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
re?eatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

TA-A_03: Construction

of XYZ releases
is fully repeatable
and the results
are fully reproducible,

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

with any exceptions

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical
fixes or mitigations
are implemented
or applied.

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

TA-A_10: Advance
warning indicators
for misbehaviours
are identified,
and monitoring mechanisms
are specified, verified
and validated based

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

with full reproducibility. \verligg:ietsr;iggesvent
\ %

verified.

~

/

documented and justified. :
on analysis.
N X L N z il
AY 7 7
\ / TT-EXPECTATIONS: : /
7 3 TT-CHANGES: XYZ s TT-RESULTS: Evidence
TT-PROVENANCE: Al TI-CONSTRUCTION: is actively maintained, Documentation is is provided to demonstrate TT-CONFIDENCE: Confidence
source code (and Tools are provided with regular updates provided, specifying that XYZ does what in XYZ is measured
attestations for to build XYZ from to dependencies what XYZ is expected it is supposed to by analysing actual
claims) for XYZ trusted sources dehaneiare to do, and what do. and dess not T iaRce IF st
are provided with (also provided) EHE CHANEES SR8 it must not do, O oesno| performance in.tests
known provenance. and how this is do Whatét st and in production.
a not do.

Tenets

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

24

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed

Trustable Model

25

https://creativecommons.org/licenses/by-sa/4.0/

Why do we need a model? @

e TSF is domain-agnostic and evidence-based
o Use generic terminology to establish fundamental concepts
o Enable all users make their own judgement about evidence

e Express complex ideas using simple elements
o Small set of ‘building block’ elements and rules
o Language rules simple enough to enforce
o Structure rules that can be verified mathematically

e Structure for recording, collecting and deriving metrics
o Confidence scores recorded by contributors
o Data-driven scores from collected test results and monitoring data
o Metrics derived from scores to feed into risk evaluation and project management

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

26

https://creativecommons.org/licenses/by-sa/4.0/

Statements and Artifacts ®

Fundamental elements of the TSF model

e Statements define some aspect of the software reaue < X >
o A single sentence that can be True or False
Y
o Used to express a Request, or a Claim, or both |
o Linked to other Statements to show dependencies RegnesiSGim Y
e Artifacts support a Claim or qualify a Request !

o Qualifying artifacts provide more detailed information Claim < 7 >
about a Request

o Evidence artifacts provide support for a Claim

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 27

https://creativecommons.org/licenses/by-sa/4.0/

Making a Statement (example)

SMA-03

Project tracks known security advisories for dependencies.

Supported Requests:

o TA-A 02

Supporting Items:

° SMA-04
References:
None

/

AOU-06: The build process must use

Integrator-controlled mirrors rather

than pulling dependencies from the
internet at build-time.

AOU-05: The build environment used
for Safety Monitor in an integrating
system is supplied with consistent

dependencies.

TT-PROVENANCE: All source code (and
attestations for claims) for “safety-monitor’
are provided with known provenance.

o

TA-A_01: All sources for “safety-monitor’
and tools are mirrored in our controlled
environment

S

TA-A_02: Components and tools used
to construct and verify safety-monitor’
are assessed, to identify potential
risks and issues

AOU-10: Integrator performs builds
in a clean environment, isolated
from the network, to ensure no interference
from build-to-build and no variance
in the build environment over time.

SMA-03: Project tracks known security
advisories for dependencies.

AOU-07: Integrator supplies and maintains
mirrors of dependencies of ‘safety-monitor’.

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

AOU-09: Integrator utilises the provided
“Cargo.lock to identi?/ dependencies
needed to build Safety Monitor.

SMA-04: Project runs “cargo deny’
on all code entering the main branch,
blocking merges until all warnings
are resolved.

28

https://creativecommons.org/licenses/by-sa/4.0/
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/TA.html#ta-a_02
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/SMA.html#sma-04

Classifying Statements ®

Classifications characterise the role of Statements in
Request (X) Expectation a given context:

e Request only: Expectation

Y

| : : | e Claim and Request: Assertion
Request & Claim Y Assertion
e Claim only: Premise

v Contexts reflects boundaries or abstraction levels:

Claim (/) Premise e A Premise in one context may be an Expectation in
another (e.g. the AOU Statements in the example)

e An Expectation for a subsystem may be treated as an
Assertion at the system level

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 29

https://creativecommons.org/licenses/by-sa/4.0/

Statements and Artifacts @

e Assertions may be qualified by an Artifact

Expectation

e A Premise with an Artifact is Evidence

Asserfion .C?Uﬁ'f?’f“f?”.,@ Artitact o The Statement describes the Claim
o The Artifact must support this Claim

e A Premise without an Artifact is an Assumption

Evidence Assumption

o @Gap: evidence not yet provided by the project

Befkrence: | Valligatian o Dependency: evidence to be provided in the
@ . @ context of a system using the software

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 30

https://creativecommons.org/licenses/by-sa/4.0/

Linking to Evidence (example)

SMA-01

The safety-monitor project Cl periodically executes the integration test
suite, and failures in these runs are investigated by contributors; resolution
of the identified causes of these failures is tracked by GitLab issues.

Supported Requests:
o TAA 11
Supporting Items:

e SMA-EVIDENCE-001
e SMA-EVIDENCE-002

References:

None

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

TT-RESULTS: Evidence is provided
to demonstrate that “safety-monitor’
does what it is supposed to do, and
does not do what it must not do.

conditions in control

TA-A_11: All specified tests are
executed repeatedI?/, under defined
ed environments,

according to specified objectives.

issues.

SMA-01: The “safety-monitor” project
Cl periodically executes the integration
test suite, and failures in these
runs are investigated by contributors;
resolution of the identified causes
of these failures is tracked by GitLab

/

SMA-EVIDENCE-001: Tests are run periodically,
verifying properties of safety-monitor.

S

SMA-EVIDENCE-002: Automated tests
are reviewed by a Subject Matter
Expert to verify they test the properties
they claim to.

31

https://creativecommons.org/licenses/by-sa/4.0/
https://codethinklabs.gitlab.io/safety-monitor/safety-monitor/user/doorstop/TA.html#ta-a_11

Evidence means Artifacts! @

An Evidence Statement makes a Claim
about an Artifact with respect to a Request oo®

made by another Statement

Artifacts must always relate to the software

itself, or to the results of software

engineering processes applied as part of @T
its development

engineering
processes

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 32

https://creativecommons.org/licenses/by-sa/4.0/

Types of Evidence

There are broad types of evidence artifact:

e Inputs: Inputs to a construction or verification
process, which may include document files for
processes performed by a human

e Results: Outputs of a construction or
verification process for this iteration, which
may include generated documents or reports

e Data: Test data collected for previous
iterations and field data from monitored
system deployments of the software

]

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

©

Build L/m Document
. Test inputs .
inputs inputs

] ﬂu:]—m:uwo—xzn:»

Field data

N~

Build data

e Docs & II
reports

33

https://creativecommons.org/licenses/by-sa/4.0/

Evaluating Evidence ®

e Designed to support scoring of the Claims captured in Statements

o Scores are only assigned to Evidence!
o Scores come in two categories

e Confidence scores are committed in the graph by a human
o Result of an assessment of the evidence by a Subject Matter Expert
e Validator scores are calculated by an automated process, based on:

o Result artifacts produced during construction and verification for this iteration
o Data artifacts collected for previous iterations or from deployments

e This part of TSF is still being developed

o Planned features include weights, to define the relative importance of
contributing Assertions and Evidence in the graph

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 34

https://creativecommons.org/licenses/by-sa/4.0/

Copyright Codethink Ltd | Licensed

TSF Methodology

35

https://creativecommons.org/licenses/by-sa/4.0/

Foundations @

e FEverything-as-code
o Store inputs to construction and verification processes rather than their results
o Store as plain text where possible and manage everything under version control

e Coordinated change and configuration management using git
o Store inputs in git repositories, managed by a single ‘forge’ (e.g. GitLab, GitHub)
o Maintain a mainline branch as the “source of truth” for each repository
o Apply controls at the point of merge (incorporation of changes from a branch)
o Manage the versions of inputs from other repositories using SHA' or tag

e Pre-merge verification and approval

o A set of automated tests must succeed for the branch before it can be merged
o The set of automated tests is configured and managed as part of the repository
o Merges may also require review or approval by designated individuals or groups

; ,
Copyright Codethink Lid | Licensed: CC BY-SA 4.0 Value produced by a Secure Hash Algorithm 36

https://creativecommons.org/licenses/by-sa/4.0/

Foundations: Software as a production line @

e Pre-merge verification

o Changes must be built, tested and reviewed before merge is allowed
e Landing changes in a shared repository

o Specifically: the mainline branch for that repository

S II Bu1/d Test _
ource \ results results \ Repository
. I:> Test I:> @ I:> Merge

Feedback D‘ %

Developer Reviewer
Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 37

https://creativecommons.org/licenses/by-sa/4.0/

Foundations: Interacting changes @

e Changes are not processed in isolation

o Other developers are working with the same source
o Changes may depend upon or conflict with each other

Build II Test II
results \ results \

I:> Test I:>

© 0 © 000 00 00 00 0 2 0000 000 9 0

A‘&\ %4— Feedback L % A,y

Other developers Developer Reviewer Other reviewers

Repository

AN

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 38

https://creativecommons.org/licenses/by-sa/4.0/

Foundations: System integration

i — Other production lines
cranges || =7 :> :><>:>
L _____

Other T

changes |-

<
A \ S Bu1/d
Our ce \ resu/ts

:>

Feedback H‘

Other developers Developer Reviewer Other reviewers

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 39

https://creativecommons.org/licenses/by-sa/4.0/

Methodology

Key stakeholder
requirements
are captured as T

Expectations Stakeholder
SEEEEEESEEEey /

C ontributor\‘

(%) Assertions are
derived from these
and mapped to

Evidence
- L_l_:_:_:_:_:_:_:_:_:_:_:l ? ': |
i Confidence | i — < -
' scores __ ;-
o Subject
Matter Expert

@ Input evidence

is scored by
subject matter
experts

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

4’@ TSF provides continuous impact assessment feedback

Input artifacts (stored in git)

@@

. S ORK(A

@) & @)@ _
(5)/ TSF Graphs

are stored in
git, read and
updated by CI

Expectations

==l
=l —
=l —

V\@) Result
Evidence is
scored in Cl by

Assertions Validators

Output

artifacts
(from Cl jobs)

Evidence

Input evidence)

H

Source code &
configs

S—

1 Li)U:DQD:[IQOQD:)

ORI OO IR NI ONCIICIOND

|

Document
source files

Tests & test
criteria

=
=D
=

&

All changes are managed by a Cl process |

40

https://creativecommons.org/licenses/by-sa/4.0/

Using scoring to guide activities and priorities

e Produce Trustable
report for main and
development branches

(x) Trustable Software Framework
Item

Trustable Reports Compliance Dotstop

e Track progress towards
objectives and assess
impacts of a change

Trustable Compliance R

) Status key item
e |[ntegrate with

automated testing
using validators to see
and link to ‘live’ results

Unreviewed Trustable Score 0%
Suspect Link Effective Trustable Score 0%

TT-PROVENANCE

Very Low Confidence Trustable Score 0-50%

TT-
' (74
Trustable Score 50-75% CONSTRUCTION
Moderate ConfidencefISElCRSIeICWATEINA

High Confidence Trustable Score 90-100%

. TT-CHANGES
e Use confidence scores
to give feedback on Compliance for TRUSTABLE -
gaps or work required
Summary TT-RESULTS

This release of XYZ is

TT-CONFIDENCE

TRUSTABLE-SOFTWARE

Compliance for TRUSTABLE

Summary Score

This release of CTRL is Trustable. 0.47

Compliance for TT

Summary

All source code (and attestations for claims) for CTRL are provided
with known provenance.

Tools are provided to build CTRL from trusted sources (also
provided) with full reproducibility.

CTRL is actively maintained, with regular updates to dependencies,

and changes are verified to prevent regressions.

Documentation is provided, specifying what CTRL is expected to
do, and what it must not do, and how this is verified.

Evidence is provided to demonstrate that CTRL does what it is
supposed to do, and does not do what it must not do.

Confidence in CTRL is measured by analysing actual performance
in tests and in production.

Score

0.50

0.47

0.66

0.01

0.65

0.53

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

41

https://creativecommons.org/licenses/by-sa/4.0/

TSF Tooling @

e Command line tools and libraries written in Python to:

©)

©)

©)

©)

Manage a stored representation of a TSF Graph in a git repository
Publish documentation and reports, and plot visualisations of a TSF graph
Define a plug-in ‘validator’ interface for automated evidence scoring

Calculate metrics based on evidence scores and weights

e Under very active development!

©)

©)

@)

©)

Was originally based on Doorstop’, but now a standalone tool (trudag)
Retains legacy support for Doorstop as a data format
Included as part of the main TSF project

Currently extending to add support for remote graphs and evidence

1 . :
Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 https://doorstop.readthedocs.io 42

https://creativecommons.org/licenses/by-sa/4.0/
https://doorstop.readthedocs.io
https://doorstop.readthedocs.io

Feedback on using TSF

43

https://creativecommons.org/licenses/by-sa/4.0/

Using TSF for uProtocol

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

44

https://creativecommons.org/licenses/by-sa/4.0/

Summary and next steps

45

https://creativecommons.org/licenses/by-sa/4.0/

Summary @

A new approach is needed to manage risk in critical systems using software
that is complex or non-deterministic, whether proprietary or open source

The Trustable Objectives define a common set of factors that should be
considered when evaluating risk for any software project

The Trustable Software Framework enables projects to:

o Document their approach to satisfying the Trustable Objectives

o Define project-specific objectives alongside these

o Collect, organise and evaluate evidence to support their objectives
The Eclipse Trustable Software Framework project has been established to
continue development of this approach in the open

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 46

https://creativecommons.org/licenses/by-sa/4.0/

Future plans @

e Complete migration of documentation and tooling into Eclipse Foundation
e Provide more examples of how TSF can be applied

e Extend tooling to support references to remote graphs and evidence

e Extend the scoring approach to support weights

e Start building a community to shape and contribute to the project

e Support other projects applying TSF in the open and use their feedback to
drive improvements and add new use cases

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 47

https://creativecommons.org/licenses/by-sa/4.0/

Where to find more information @

Introductory talks and article

e FOSDEM: https://www.youtube.com/watch?v=2TS5EENC6Ms
e SDV Community Day: https://www.youtube.com/watch?v=lyp3b2e35iY
e Building Open Safety Standards with the Eclipse Trustable Software Project

TSF project home in the Eclipse Foundation

e https://projects.eclipse.ora/projects/technoloqgy.tsf

TSF project documentation (temporary home on gitlab.com)

e https://codethinklabs.qitlab.io/trustable/trustable/

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0 48

https://creativecommons.org/licenses/by-sa/4.0/
https://www.youtube.com/watch?v=2TS5EENC6Ms
https://www.youtube.com/watch?v=Iyp3b2e35iY
https://newsroom.eclipse.org/eclipse-newsletter/2025/april/building-open-safety-standards-eclipse-trustable-software-project
https://projects.eclipse.org/projects/technology.tsf
https://codethinklabs.gitlab.io/trustable/trustable/

Copyright Codethink Ltd | Licensed

Backup slides

49

https://creativecommons.org/licenses/by-sa/4.0/

TSF and S-CORE @

Trustable Software Framework S-CORE process

Mainly for existing projects, including FLOSS Mainly for new development projects

For adopters of FLOSS for safety-relevant systems | For S-CORE stack developers + integrators

An argument with measurements, not a process A standards-compliant safety process

Aiming to be a new fully open standard Aiming to develop standards-compliant FLOSS
Ongoing safety assessments by exida Ongoing safety assessments by exida

Tooling is doorstop + mkdocs Tooling is sphinx-needs + sphinx

May affect EFFSP + badge programme?

50

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

RAFIA: Risk Analysis,

TSF
Specification

Y

Test
| Specification

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

Specification h

™,

R

/

Test Data
Analysis

v

------- Misbehaviours

- (Implementation |

Pre-merge
Tests

v
Post-merge
Tests

Analysis b

Testing

Fault
Induction

Automated
Testing

Statements

Artifacts

i

Fault Induction and Automation

/ Processes

Test Design

Misbehaviours <——

\

Bug & Defect
Analysis

Risk
Analysis \

Test Data
Analysis

S

R
-.-

51

https://creativecommons.org/licenses/by-sa/4.0/

RAFIA: Automated testing

informs) provides data for
Risk Analysis € Test Analysis <
informs and S ificati informs
is referenced by informs peCI ication
. . Test Implementation
A : 0 f
TSF Specification Test Data Analysis = ey mom
. i i specifies scenarios Test
Expectations < gltzttlosr;:;asl and contexts for informs informs Operations
may inform A 4
de_termined Test DeSign is applied
using or used by
A Pre-merge Tests
Assertions = Test Metrics Happy False
: d:g::j""by Path Tests verity Negative Tests .
calculated 4 A 3
from verify
y ® 0
Evidence Test Results Exception
provides ol Handling Tests may use
A
may
provides involve
Test Specification —_ Soak -
produces include Tests ~may using Stressors
reaiiita include
Test T T \
Scenarios
specify test | extend |
steps and
pnee Performance |, Stress e
Tests Tests
Test Automated i
Contexts specify test Testing
systems & config Post-mer ge Tests

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

RAFIA: Testing quadrant

Can we verify existing tests
by deliberately introducing
Misbehaviours that should

make them fail?

Specified
Behaviours
leading to
identified and
mitigated

Misbehaviours

Can we identify new
Misbehaviours by running
tests in different sequences,
or combinations, or contexts?

Specified

Behaviours

> leading to
unidentified

Misbehaviours

Unspecified
Behaviours
leading to <
identified
Misbehaviours

Can we cause existing tests
to fail by e.g. running them in
the presence of abnormal
system loads?

Unspecified
Behaviours

leading to
unidentified

Misbehaviours

Can we identify new
Misbehaviours by monitoring
AWI and test data? Are they

covered by existing

Mitigations?

Misbehaviours describe ways in which the software may deviate from its its expected Behaviours

Identified means that Misbehaviours are predicted by Risk Analysis or observed in test or production
Unidentified Misbehavours may be caused by interference we’ve not considered or tests we’ve not specified

Identified Misbehaviours may point to scenarios we've not specified, or inadequate test implementations

Unspecified Behaviours may mean that Expectations, Assertions or specification artifacts need improving

Statistics for each quadrant are used to measure confidence in testing, detection and Mitigations

Copyright Codethink Ltd | Licensed: CC BY-SA 4.0

53

https://creativecommons.org/licenses/by-sa/4.0/

