ELISA \WORKSHOP

Safety Applications

ELISA Workshop
Munich, Germany

November 18-20, 2025
Co-hosted with Red Hat

Exploring possibilities for integrating StrictDoc
with ELISA's requirements template approach
for the Linux kernel

or: “RE: Introducing SW Requirements in the Linux kernel development process”

Tobias Deiminger, Linutronix GmbH

Stanislav Pankevich, Reflex Aerospace GmbH

ELISA —WORKSHOP

Safety Applications License: CC-BY-4.0

Introductions

Tobias Deiminger: Software Engineer, Linutronix GmbH

e Developing security features for and driving security certification of Linutronix IGLOS
OSSW: Contributor to StrictDoc, Debian, misc projects for upstreaming patches

Stanislav Pankevich: Software Engineer, Reflex Aerospace GmbH

e Satellite software, software systems engineering
e OSSW: StrictDoc documentation tool, ReqlF Python lib, Mull mutation testing system
WG: SPDX Functional Safety working group

ELISA - WORKSHOP

Safety Applications

Agenda

e StrictDoc: Introduction to the project
e Traceability use case at Linutronix
e Linux kernel showcase and hands-on demo

ELISA - WORKSHOP

Safety Applications

Motivation behind the StrictDoc project

"Every hard engineering problem can be solved with an infinite amount of cash."
How much cash is needed to bring requirements to open source software?

Ok, quite some cash but also: culture, methodology, and tools.

ELISA - WORKSHOP

Safety Applications

Requirement statement/rationale examples

STATEMENT example — WHAT

The sem_wait () function shall lock the
semaphore referenced by sem by performing a
semaphore lock operation on that semaphore. If
the semaphore value is currently zero, then...

https://pubs.opengroup.org/onlinepubs/9799919
799/functions/sem wait.html

|deally, requirements should also have a
UUID for easier linking to other elements.

ELISA - WORKSHOP

Safety Applications

RATIONALE example — WHY

The nanosleep() function specifies that the
system-wide clock CLOCK_REALTIME is used to
measure the elapsed time for this time service.
However, with the introduction of the monotonic
clock CLOCK_MONOTONIC a new relative sleep
function is needed to allow an application to
take advantage of the special characteristics of
this clock.

https://pubs.opengroup.org/onlinepubs/9799919
799/functions/clock nanosleep.html

https://pubs.opengroup.org/onlinepubs/9799919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/clock_nanosleep.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/clock_nanosleep.html

Culture — Bridging requirements with source code

e Most documentation on GitHub — README How-tos and API reference

o The What and Why are less obvious due to a focus on the How and implementation details.

e Design/development phase vs audit phase —
o Requirements enable the safety and security assessments but equally important:
o Make requirements really useful for developers while and before any code is written
m Not only after!

e Culture of testing — Culture of requirements (extended Virtuous Cycle)
o Simple test programs in projects from 1990-2000s, if existed, very pretty basic and chaotic.

o Nowadays there are test methods and frameworks, everyone knows how to do testing.
o s the same happening with requirements, i.e., REQ — RED — GREEN — REFACTOR?

ELISA - WORKSHOP

Safety Applications

Methodology — Traceability mechanics

e \Working with the large numbers of requirements is not easy
o Good structure based on functional analysis/partitioning.
e Linux's System-Subsystem-File — Integrate into user project specs:

o Example: Satellite — Onboard Data Handling Subsystem — Operating System Component —
Linux — Timers — clock_nanosleep()/sys_clock_nanosleep().

e Distill the requirements/intent from the other elements:

o Requirements — What-Why — Intent E .
o API reference — Interface xerclcss
o Design and architecture — Implementation details Grab a marker and find:
o User manual — How-tc.> |nstruct|on§ | | Requirements vs other aspects
o Other: LICENSE, contributors, config, meta information...
in your favourite Linux
subsystem/module description.
ELISA

Enabling Linuxin f-’@, WORKSHOP

Safety Applications

Tools — Integrating with the existing tools

e Technology gaps:
'Big' OSSW players, such as, Sphinx, Doxygen do not support traceability out of the box.
Sphinx — Technical documentation websites. Building block: document/prose.
o Doxygen — APl documentation websites. Building block: Source file with comment markers.
o Commercial SW, e.g., Confluence, does not trace to SW source and other artifacts.
e GitHub gist: 18 tools for requirements traceability of various maturity
o Atleast 5 Sphinx extensions on GitHub to add traceability (+a few in-house)
o Doxygen is adding requirements traceability but requirements have to come from another tool

e How to make these tools work together?

(@)

(@)

ELISA - WORKSHOP

Safety Applications

https://gist.github.com/stanislaw/aa40eb7de9f522ad482e5d239c435ff8
https://github.com/doxygen/doxygen/pull/11839

StrictDoc tool

e Created in 2019, inspired by Doorstop
e Apache 2 license, 1.9K pull requests, 5K+ commits, 30K+ LOC

e In a nutshell:
o Let's cut prose and code into atomic nodes, give them UUIDs, and link them together
e Key highlights:
Connecting docs, requirements, source and test code, test reports, coverage.
Web-based requirements editor.
SDoc format for storing requirements with metadata. Internal representation is a graph.
Other formats can be read or written. Native ReqlF bi-directional interface.
RST export for interfacing with Sphinx. Possible direction: sphinx-strictdoc plugin.
Work with the SPDX FuSa WG. Establishing the equivalence between SPDX and SDoc.

O O O O O O

ELISA - WORKSHOP

Safety Applications

Traceability use case at Linutronix

Technical documentation for IGLOS, a secure
Linux-based OS for industrial use

Started using and contributing to StrictDoc in 2024
Edited via Web Ul or text editors, reviewed in GitLab

MRs. HTML export deployed to an internal web server.

A diff-Ul supports requirement reviews.
Certification according to IEC 62443-4-2
accomplished, EU CRA upcoming

See blog post [1]

[1] https://www.linutronix.de/blog/From-Code-to-Compliance-Part1-IEC-62443-Certification-with

IACS Component

AR

IGLOS

SECURE BEACON
by LINUTRZNIX

ding
to IEC 62443-4-2

https://www.linutronix.de/blog/From-Code-to-Compliance-Part1-IEC-62443-Certification-with

Traceability model

Structure based on arc42, extended
with requirements, compliance matrix,
threat model, and user guide
Requirements trace to Robot/pytest
tests and GitLab reviews

Audit focused on StrictDoc
"Compliance Matrix" document
including conformity statements
Interface to external standards by
converting their outline to requirement
stubs in *.sdoc

[REQUIREMENT]
The system shall
provide a Web Ul
for configuration.

& 51

[THREATMODEL]
Threat model for
Web UI

A 4

([THREAT]

An attacker could
deceive users into
providing their

strictdoc
in git

authentication

Mitigation

[COMPLIANCE]
Explanation how | export

IEC
62443-4-2
Standard

CR1.1
Provide the
capability to
identify and

authenticate all

\ human users J

Customer B

sum of child

A A 4

~

[REQUIREMENT]
The Web Ul shall
identify and
authenticate all
users

IDESIGN]

Y

requirements fulfills
IEC 62443 CR 1.1
Q _/

statements for
certification body

/ [REQUIREMENT]
Assumption:
FIDO2 hardware
passkeys are
provided by
_System Integrator /

B [REQUIREMENT]
Interactive user
login shall support
FIDO2 hardware
tokens as primary
: : factor

def WebauthnBegin(...):

def WebauthnComplete(...):

Implement TestCase
authentication via '
WebAuthn IsVerifiedBy
I
Language-Aware Forward Link to Method : Y
Source Code | *A% Test Cases ***

ingit| ! Login as admin

Login To Webui username=admin
vault_path=${FIDO_VAULT ADMIN}

Login without correct FID02 vault
Login To Webui username=admin expect to fail=True

Test Code
in git

o

]
[TEST_RESULT]
PASSED

Linux kernel proposal

e Starting point is ELISA’s Linux Kernel Requirements Template
e Based on SPDX-* tags: Looks compatible with StrictDoc's capabilities
e Challenge: Can the proposal be implemented?

https://docs.google.com/document/u/0/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs/edit

Proof of concept

e Most of the requested features were already provided by StrictDoc

e Identified deltas, implemented them, many are merged

e The source code is a fragment of Linux source tree with the patches by ELISA
applied

e Using .sdoc for sidecar requirements files
e POC available on GitHub, rendered to GitHub Pages

/

Hands-on demo

ELISA —WORKSHOP

Safety Applications

https://github.com/strictdoc-project/linux-strictdoc

Traceability model: Linux

Simpler: ELISA proposed only
Requirements and Source Code
functions as traceable items

Our proposal has tracing with tests
Things like POSIX compliance
matrix and linking test reports to be
discussed

| SPDX-Reg-ld

*.sdoc
in Documentation/requirements

[REQUIREMENT]

merge by | | read from physical memory
|

FE1: shall check if ppos excee
physical address space

)

FE2: shall check if read range
valid

| parent relation, role Test
_ custom validation
is
w

SPDX::ethiId
A i
' [REQUIREMENT] ' {

i (no example yet) :

[TEST] [TEST]
read 64bit ppos Test read outside
vs 32 bit addr linear map

L\

file relation to function

file relation to function
(role test)

v Source Code

It
* SPDX-Req-ID: bc047d26...

7

static ssize_t read_mem(

struct file *file, ...) { ... }

Test Code
int tesf read outside linear_map(in tools/testing
strugt test_context *t) { ... }

int test_read_at_addr_32bit_ge(
struct test_context *t) { ... }

D Neues Unterfen:

00 Ansicht teilen

[REQUIREMENT]

MID: d945eb59099b0359858b0b3f3aeb15fd9c188ffabc06b5d9d3fbde72e645c71e
SPDX-Req-Sys: Character Drivers and Misc

TITLE: write_mem

[REQUIREMENT]

MID: 97c02e40efb914aa7368b8fa6025f467d7dc51049b3df9223ef45571e8eebaf2
SPDX-Req-Sys: Character Drivers and Misc

TITLE: mmap_mem

[REQUIREMENT]

MID: ed61250a1e26264928301bb1f6c04f313dab998cad9f53fe2450fcb11d995073
SPDX-Req-Sys: Character Drivers and Misc

TITLE: memory_lseek

COMMENT: >>>

The memory devices use the full 32/64 bits of the offset, and so we cannot
check against negative addresses: they are ok. The return value is weird,
though, in that case (0).

<<<

COMMENT: >>>

Also note that seeking relative to the "end of file" isn't supported:

it has no meaning, so passing orig equal to SEEK_END returns -EINVAL.

<<<

[REQUIREMENT]

MID: 53a11329f9090a6c2be01569f59e52f2d4c0c84d0763ae3cOfc73a0c8ce5e705
SPDX-Req-Sys: Character Drivers and Misc

TITLE: open_port

SPDX-Req-Sys: CHaracter Drivers and Mis
TITLE: memory_open

[[/SECTION]]

[[SECTION]]
Documentation/requirements/charmisc.sdoc

[TEST]

MID: selftests/devmem:open_devnum

TITLE: memory_open FE_3

DESCRIPTION: Test open /dev/mem provides the correct min, maj
RELATIONS:

- TYPE: Parent

ROLE: Test
VALUE: tools/testing/selftests/devmem/tests.c
FUNCTION: test_open_devnum
- TYPE: File
ROLE: Test
VALUE: tools/testing/selftests/devmem/devmem.c
LINE_RANGE: 33, 36
Documentation/requirements/charmisc.sdoc

73,11

108,1

[®] Einfugen

e

SPDX-Req-1ID:
SPDX-Req-Text:

memory_open - set the filp f_op to the memory device fops and invoke open().
@inode: inode of the device file.

@filp: file structure for the device.

Function's expectations:
1. This function shall retrieve the minor number associated with the input
inode and the memory device corresponding to such minor number;

2. The file operations pointer shall be set to the memory device file operations;

3. The file mode member of the input filp shall be OR'd with the device mode;

Assumptions of Use:
1. The input inode and filp are expected to be non-NULL.

Context: process context.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 4. The memory device open() file operation shall be invoked.
*
*
*
*
*
*
* Return:
* * 0 on success
* * %-ENXIO - the minor number corresponding to the input inode cannot be
* associated with any device or the corresponding device has a NULL fops
* pointer
* * any error returned by the device specific open function pointer
*

* SPDX-Req-End

*/
static int memory_open(struct inode *inode, struct file *filp)

int minor;
const struct memdev *dev;

13% minor = iminor(inode);
if (minor >= ARRAY_SIZE(devlist))
return -ENXIO;

dev = &devlist[minor];
if (!dev->fops)
return -ENXIO;

filp->f_op = dev->fops;
filp->f_mode |= dev->fmode;

if (dev->fops->open)
return dev->fops->open(inode, filp);

return 0;

Btatic const struct file_operations memory_fops = {
EYEMdrivers/char/mem.c

Q_ suchen

Further work

Connect requirements, tests and test reports

o Test report format for Linux tests has to be evaluated and integrated.
o Make function expectations individually traceable with composite requirement

Use SPDX-* fields for tests as well

Usage of SPDX-REQ-CHILD and SPDX-REQ-REF to be clarified
Integration with Sphinx and kernel-doc

Performance tuning for very large projects

Can you think of useful traceability metrics and validations?

Contact information

e Tobias Deiminger: tobias.deiminger@linutronix.de
e Stanislav Pankevich: s.pankevich@gmail.com
e StrictDoc project: https://github.com/strictdoc-project/strictdoc

Join StrictDoc Office Hours: Every Tuesday, (1) 17:00-18:00 CET

mailto:tobias.deiminger@linutronix.de
mailto:s.pankevich@gmail.com
https://github.com/strictdoc-project/strictdoc

Licensing of Workshop Results

All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0)
[hitps://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel
code contributions.

You are free to:

e Share — copy and redistribute the material in any medium or format

e Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

ELISA - WORKSHOP

Safety Applications

https://creativecommons.org/licenses/by/4.0/

@ Linux / [Character Drivers and Misc /

< >
H 1 Hig
2. Low-Level Requirements
— 2 Lov
C me
— 21
D ensafion/roau rerants SECTION — 211 R
D character Drivers and Misc
2111
charmisc.sdoc 2'1 . devmem
2.1.1.2 write_mem
B Tracing :
2143 7
SECTION
2114 71
2.1.1. Requirements R
5 open_
2116 T
REQU. — 2.1.2 Tests
2.1.1.1. read mem 2121 7 \FE_1, FE_2, FE 4
2122 m 1 FE_3
Ch er Drivers and Mis 2.1.23
R selftests/devmem:read_at_addr_32bit_ge read_mem FE_1 2124
selftests/devmem:read_outside_linear_map read_mem FE_2
selftests/devmem:read_allowed_area read_mem FE_3.2 21.25
selftests/devmem:read_allowed_area_ppos_advance read_mem FE_4 i35
selftests/devmem:read_restricted_area read_mem FE_3.3, FE_3.3.1, FE_3.2.2 o
selftests/devmem:read_secret_area read_mem FE_??? 2127
RELATION ile drivers/char/mem.c, lines: 78-216, function read_mem()
2.1.2.8
Dx:Redc] 2129
read_mem - read from physical memory (/dev/mem).
; : . 2.1.210 write_mem -
@file: struct file associated with /dev/mem. S e
@buf: user-space buffer to copy data to. 2.1.211 memory | FE 2.2
@count: number of bytes to read. 2.1.212 memory_Iseek FE_2, FE_2

@ppos: pointer to the current file position, representing the physical
address to read from.

21213 me

This function checks if the requested physical memory range is valid
and accessible by the user, then it copies data to the input

Setup and usage

pipx install strictdoc

git clone https://github.com/strictdoc-project/linux-strictdoc
cd linux-strictdoc

strictdoc export . # validate and render to HTML

strictdoc manage auto-uid . # hash generation, drift detection

File structure

—— Documentation
— requirements
|— charmisc.sdoc # side-car
L — tracing.sdoc # side-car
—— drivers

L— mem.c # Linux code with inlined LLRs
—— kernel
L— trace

— trace events.c # Linux code with inlined LLRs
— strictdoc config.py # StrictDoc project
configuration
L— tools

|— requirements

| — validation plugin.py # custom requirement validations

— testing

L— selftests

L— devmem

