
ELISA Workshop
Munich, Germany

November 18-20, 2025
Co-hosted with Red Hat

Exploring possibilities for integrating StrictDoc
with ELISA’s requirements template approach

for the Linux kernel

or: “RE: Introducing SW Requirements in the Linux kernel development process”

License: CC-BY-4.0

Tobias Deiminger, Linutronix GmbH

Stanislav Pankevich, Reflex Aerospace GmbH

Introductions

Tobias Deiminger: Software Engineer, Linutronix GmbH

● Developing security features for and driving security certification of Linutronix IGLOS
● OSSW: Contributor to StrictDoc, Debian, misc projects for upstreaming patches

Stanislav Pankevich: Software Engineer, Reflex Aerospace GmbH

● Satellite software, software systems engineering
● OSSW: StrictDoc documentation tool, ReqIF Python lib, Mull mutation testing system
● WG: SPDX Functional Safety working group

License: CC-BY-4.0

Agenda

● StrictDoc: Introduction to the project
● Traceability use case at Linutronix
● Linux kernel showcase and hands-on demo

License: CC-BY-4.0

Motivation behind the StrictDoc project

"Every hard engineering problem can be solved with an infinite amount of cash."

How much cash is needed to bring requirements to open source software?

Ok, quite some cash but also: culture, methodology, and tools.

License: CC-BY-4.0

STATEMENT example — WHAT

The sem_wait() function shall lock the
semaphore referenced by sem by performing a
semaphore lock operation on that semaphore. If
the semaphore value is currently zero, then…

https://pubs.opengroup.org/onlinepubs/9799919
799/functions/sem_wait.html

Requirement statement/rationale examples

License: CC-BY-4.0

RATIONALE example — WHY

The nanosleep() function specifies that the
system-wide clock CLOCK_REALTIME is used to
measure the elapsed time for this time service.
However, with the introduction of the monotonic
clock CLOCK_MONOTONIC a new relative sleep
function is needed to allow an application to
take advantage of the special characteristics of
this clock.

https://pubs.opengroup.org/onlinepubs/9799919
799/functions/clock_nanosleep.html

Ideally, requirements should also have a
UUID for easier linking to other elements.

https://pubs.opengroup.org/onlinepubs/9799919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/clock_nanosleep.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/clock_nanosleep.html

Culture — Bridging requirements with source code
● Most documentation on GitHub — README How-tos and API reference

○ The What and Why are less obvious due to a focus on the How and implementation details.
● Design/development phase vs audit phase →

○ Requirements enable the safety and security assessments but equally important:
○ Make requirements really useful for developers while and before any code is written

■ Not only after!
● Culture of testing → Culture of requirements (extended Virtuous Cycle)

○ Simple test programs in projects from 1990-2000s, if existed, very pretty basic and chaotic.
○ Nowadays there are test methods and frameworks, everyone knows how to do testing.
○ Is the same happening with requirements, i.e., REQ → RED → GREEN → REFACTOR?

License: CC-BY-4.0

● Working with the large numbers of requirements is not easy
○ Good structure based on functional analysis/partitioning.

● Linux's System-Subsystem-File → Integrate into user project specs:
○ Example: Satellite → Onboard Data Handling Subsystem → Operating System Component →

Linux → Timers → clock_nanosleep()/sys_clock_nanosleep().
● Distill the requirements/intent from the other elements:

○ Requirements — What-Why → Intent
○ API reference — Interface
○ Design and architecture — Implementation details
○ User manual — How-to instructions
○ Other: LICENSE, contributors, config, meta information…

Methodology — Traceability mechanics

License: CC-BY-4.0

Exercise:

Grab a marker and find:

Requirements vs other aspects

in your favourite Linux
subsystem/module description.

Tools — Integrating with the existing tools
● Technology gaps:

○ 'Big' OSSW players, such as, Sphinx, Doxygen do not support traceability out of the box.
○ Sphinx – Technical documentation websites. Building block: document/prose.
○ Doxygen – API documentation websites. Building block: Source file with comment markers.
○ Commercial SW, e.g., Confluence, does not trace to SW source and other artifacts.

● GitHub gist: 18 tools for requirements traceability of various maturity
○ At least 5 Sphinx extensions on GitHub to add traceability (+a few in-house)
○ Doxygen is adding requirements traceability but requirements have to come from another tool

● How to make these tools work together?

License: CC-BY-4.0

https://gist.github.com/stanislaw/aa40eb7de9f522ad482e5d239c435ff8
https://github.com/doxygen/doxygen/pull/11839

StrictDoc tool
● Created in 2019, inspired by Doorstop
● Apache 2 license, 1.9K pull requests, 5K+ commits, 30K+ LOC
● In a nutshell:

○ Let's cut prose and code into atomic nodes, give them UUIDs, and link them together
● Key highlights:

○ Connecting docs, requirements, source and test code, test reports, coverage.
○ Web-based requirements editor.
○ SDoc format for storing requirements with metadata. Internal representation is a graph.
○ Other formats can be read or written. Native ReqIF bi-directional interface.
○ RST export for interfacing with Sphinx. Possible direction: sphinx-strictdoc plugin.
○ Work with the SPDX FuSa WG. Establishing the equivalence between SPDX and SDoc.

License: CC-BY-4.0

License: CC-BY-4.0

Traceability use case at Linutronix
● Technical documentation for IGLOS, a secure

Linux-based OS for industrial use
● Started using and contributing to StrictDoc in 2024
● Edited via Web UI or text editors, reviewed in GitLab

MRs. HTML export deployed to an internal web server.
A diff-UI supports requirement reviews.

● Certification according to IEC 62443-4-2
accomplished, EU CRA upcoming

● See blog post [1]
[1] https://www.linutronix.de/blog/From-Code-to-Compliance-Part1-IEC-62443-Certification-with

https://www.linutronix.de/blog/From-Code-to-Compliance-Part1-IEC-62443-Certification-with

License: CC-BY-4.0

● Structure based on arc42, extended
with requirements, compliance matrix,
threat model, and user guide

● Requirements trace to Robot/pytest
tests and GitLab reviews

● Audit focused on StrictDoc
"Compliance Matrix" document
including conformity statements

● Interface to external standards by
converting their outline to requirement
stubs in *.sdoc

Traceability model

Linux kernel proposal

License: CC-BY-4.0

● Starting point is ELISA’s Linux Kernel Requirements Template
● Based on SPDX-* tags: Looks compatible with StrictDoc's capabilities
● Challenge: Can the proposal be implemented?

https://docs.google.com/document/u/0/d/1c7S7YAledHP2EEQ2nh26Ibegij-XPNuUFkrFLtJPlzs/edit

Proof of concept

License: CC-BY-4.0

● Most of the requested features were already provided by StrictDoc
● Identified deltas, implemented them, many are merged
● The source code is a fragment of Linux source tree with the patches by ELISA

applied
● Using .sdoc for sidecar requirements files
● POC available on GitHub, rendered to GitHub Pages

Hands-on demo
https://github.com/strictdoc-project/linux-strictdoc

https://github.com/strictdoc-project/linux-strictdoc

License: CC-BY-4.0

● Simpler: ELISA proposed only
Requirements and Source Code
functions as traceable items

● Our proposal has tracing with tests
● Things like POSIX compliance

matrix and linking test reports to be
discussed

Traceability model: Linux

Further work

License: CC-BY-4.0

● Connect requirements, tests and test reports
○ Test report format for Linux tests has to be evaluated and integrated.
○ Make function expectations individually traceable with composite requirement

● Use SPDX-* fields for tests as well
● Usage of SPDX-REQ-CHILD and SPDX-REQ-REF to be clarified
● Integration with Sphinx and kernel-doc
● Performance tuning for very large projects
● Can you think of useful traceability metrics and validations?

Contact information

License: CC-BY-4.0

● Tobias Deiminger: tobias.deiminger@linutronix.de
● Stanislav Pankevich: s.pankevich@gmail.com
● StrictDoc project: https://github.com/strictdoc-project/strictdoc

Join StrictDoc Office Hours: Every Tuesday, 🕔 17:00–18:00 CET

mailto:tobias.deiminger@linutronix.de
mailto:s.pankevich@gmail.com
https://github.com/strictdoc-project/strictdoc

Licensing of Workshop Results
All work created during the workshop is licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0)
[https://creativecommons.org/licenses/by/4.0/] by default, or under another suitable open-source license, e.g., GPL-2.0 for kernel
code contributions.

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

License: CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Work in Progress - License: CC-BY-4.0

License: CC-BY-4.0

pipx install strictdoc

git clone https://github.com/strictdoc-project/linux-strictdoc

cd linux-strictdoc

strictdoc export . # validate and render to HTML

strictdoc manage auto-uid . # hash generation, drift detection

Setup and usage

File structure

License: CC-BY-4.0

.
├── Documentation
│ └── requirements
│ ├── charmisc.sdoc # side-car
│ └── tracing.sdoc # side-car
├── drivers
│ └── char
│ └── mem.c # Linux code with inlined LLRs
├── kernel
│ └── trace
│ └── trace_events.c # Linux code with inlined LLRs
├── strictdoc_config.py # StrictDoc project
configuration
└── tools
 ├── requirements
 │ └── validation_plugin.py # custom requirement validations
 └── testing
 └── selftests
 └── devmem
 └── tests.c # tests for /dev/mem LLRs

